
C2P2L

The Completeness of Classical

Propositional and Predicate Logic

Aldo Antonelli
University of California, Davis

10 January 2015

Contents

I Introduction 2

II The propositional case 2
1. Preliminaries, p. 2 • 2. Semantics for propositional logic, p. 4 • 3. Proof theory for propositional

logic, p. 5 • 4. Soundness and Completeness of propositional logic, p. 10

III The predicate case 11
5. Preliminaries, p. 11 • 6. Semantics of predicate logic, p. 12 • 7. Proof theory of predicate logic,

p. 14 • 8. Soundness and completeness of predicate logic, p. 17

IV Extensions and applications 20
9. Rudiments of model theory, p. 20 • 10. Non-standard models of arithmetic, p. 25 • 11. The

interpolation theorem, p. 27 • 12. Lindström’s Theorem, p. 32

V Problems Sets 36
13. Problem Set I: syntactic matters, p. 36 • 14. Problem Set II: semantic matters, p. 38 • 15. Problem

Set III: applications of compactness, p. 40 • 16. Problem Set IV: the game semantics, p. 41 • 17.

Problem Set V: Definability, p. 42

This work is licensed under the Creative Commons Attribution–ShareAlike 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street,
Suite 900, Mountain View, California, 94041, USA. Revisions to Parts II and III by G. J. Mattey, January 3, 2020.

1



Part I

Introduction

Kurt Gödel’s completeness theorem for the first-order predicate calculus (1929–30) is one of the deepest

classical results in metalogic, perhaps of deeper foundational significance than Gödel’s own incomplete-

ness theorem for arithmetic (1931). The theorem establishes the extensional equivalence of two very

different notions of consequence for first-order formulas, validity and provability, the first one of which

involves an unbounded universal quantification over the class of possible interpretations, while the

second one merely asserts the existence of certain finite sequences of formulas.

The purpose of these notes is to chart a direct and self-contained route to a proof of the completeness

theorem for first-order logic. Since the heart of the combinatorial argument is already present in the

proof of the propositional case, the propositional case is treated independently. Once the proof strategy

for the propositional case is laid out, the further complications required to handle existential witnesses

in the predicate case are introduced. Thus, the completeness proof takes up the first two parts of

what follows. The third part is devoted to further results and applications, while the last part collects

some problem sets that introduce further material and might be useful for classroom use. It should

be mentioned that where proofs are routine they have been merely sketched or even omitted (the full

details to be supplied at the chalkboard), but any unexpected steps are explicitly mentioned.

Part II

The propositional case

Preliminaries

The language L0 of classical propositional logic comprises as basic symbols countably many propo-

sitional variables p0, p1, . . . as well as symbols for the connectives ∼ (not), ⊃ (if . . . then) and the two

parentheses ( and ). We assume that these symbols are all distinct and no one occurs as a part of another

one. We refer to the set of the propositional variables as the set At0 of the atomic sentences.

1. Definition: The set F0 of the formulas of the language L0 is inductively defined as the smallest set

of strings over the alphabet containing At0 and such that if ϕ and ψ are in F0, then so are:

É (∼ϕ);
É (ϕ ⊃ψ).

2 . Theorem: Principle of induction on formulas: If some property P holds of all the propositional

variables and is such that it holds for (∼ϕ) and (ϕ ⊃ ψ) whenever it holds for ϕ and ψ, then P holds

of all formulas in F0 .
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Proof. Let S be the collection of all formulas with property P, so that, in particular, S ⊆ F0. Then S

contains the propositional variables and is closed under the connectives; since F0 is the smallest such

class, also F0 ⊆ S. So F0 = S, and every formula has propery P.

3. Exercise: Prove that any formula in F0 is balanced, in that it has as many left parentheses as right

ones. Also, prove that no formula begins with ∼ and that no proper initial segment of a formula is a

formula.

The formulas (ϕ∨ψ) and (ϕ∧ψ) abbreviate ((∼ϕ) ⊃ψ) and∼(ϕ ⊃ (∼ψ)), respectively. Similarly,

ϕ ≡ ψ abbreviates (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ). Parentheses around ∼ϕ are usually dropped, with the under-

standing that ∼ binds the shortest formula that follows it; outermost parentheses are likewise usually

dropped.

4. Theorem: Unique Readability: Any formula ϕ in F0 has exactly one parsing as one of the following

1. pn for some pn ∈ At0
2. (∼ψ) for some ψ in F0;

3. (ψ ⊃ θ ) for some ψ,θ in F0.

Moreover, such parsing is unique, in that, e.g., ϕ cannot have the form (∼ψ) in two different ways.

Proof. By induction on ϕ. For instance, suppose that ϕ has two distinct readings as (ψ ⊃ θ ) and

(ψ′ ⊃ θ ′). If we remove the initial left parenthesis from each, then we see that one of them must be an

initial segment of the other (or else one would be a proper initial segment of the other), and thereforeψ

andψ′ must be the same sequence of symbols and hence by inductive hypothesis also the same formula.

It also follows that θ and θ ′ are the same string, and therefore (by inductive hypothesis again) the same

formula.

5. Theorem: Principle of definition by recursion: for any set V and functions i : At0→ V and h1, h2 from

V and V × V , respectively, into V , there exists exactly one function f : F0→ V satisfying the following

equations:

f (pn) = i(pn)

f (∼ϕ) = h1( f (ϕ))

f (ϕ ⊃ψ) = h2( f (ϕ), f (ψ))

Proof. Let F be the class of all functions g such that:

É dom(g) is finite and closed under subformulas;

É whenever ϕ is in dom(g), g satisfies the equation corresponding to ϕ.

Put f =
⋃

F . It is easy to see that:

(a) No two functions g and g ′ inF disagree on any of the arguments on which they are both defined.

Hence, f is well-defined as a function. (This requires Unique Readability.)

(b) f satisfies the equations.
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(c) f is unique.

(d) f is total, i.e., dom( f ) = F0.

These are established by induction on formulas.

6. Definition: Uniform substitution. If ϕ and ψ are formulas, and pi is a propositional variable, then

ϕ[ψ/pi] denotes the result of replacing each occurrence of pi by an occurrence of ψ in ϕ; similarly, the

simultaneous substitution of p1, . . . , pn by formulas ψ1, . . . ,ψn is denoted by ϕ[ψ1/p1, . . . ,ψn/pn].

7. Exercise: Give a mathematically rigorous definition of ϕ[ψ/pi] using Theorem 5.

Semantics for propositional logic

8. Definition: Let {t, f} be the set of the two truth values, “true” and “false.” A valuation for L0 is a

function v assigning either t or f to the propositional variables of the language, i.e., v : At0→ {t, f}.

9. Theorem: Every valuation v can be “lifted” to a unique function v : F0→ {t, f} such that:

v(pn) = v(pn);

v(∼ϕ) =







t if v(ϕ) = f;

f otherwise;

v(ϕ ⊃ψ) =







t if v(ϕ) = f or v(ψ) = t;

f if v(ϕ) = t and v(ψ) = f.

Proof. Apply Theorem 5.

10. Exercise: Show that the valuation clauses for ⊃ and ∼ give the right truth tables for ∧ and ∨:

ϕ ψ ϕ ∧ψ ϕ ∨ψ

t t t t

t f f t

f t f t

f f f f

11. Theorem: Local Determination: Suppose that v1 and v2 are valuations that agree on the proposi-

tional letters occurring in ϕ, i.e., v1(pn) = v2(pn) whenever pn occurs in ϕ. Then they also agree on ϕ,

i.e., v1(ϕ) = v2(ϕ).

Proof. By induction on ϕ.

12. Definition: The following are semantic notions:

É A formula ϕ is satisfiable if for some v, v(ϕ) = t; it is unsatisfiable if for no v it holds v(ϕ) = t;

É A formula ϕ is a tautology if v(ϕ) = t for all valuations v;
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É A formula ϕ is contingent if it is satisfiable but not a tautology;

É if Γ is a set of formulas, Γ |= ϕ (“Γ entails ϕ”) if and only if v(ϕ) = t for every valuation v on

which v(ψ) = t for every ψ ∈ Γ .
É if Γ is a set of formulas, Γ is satisfiable if there is a valuation v on which v(ψ) = t for every ψ ∈ Γ ,

and Γ is unsatisfiable otherwise.

13. Exercise: The following can all be proved with little more than “definition chasing”:

(a) ϕ is a tautology if and only if ∅ |= ϕ;

(b) Γ |= ϕ if and only if Γ ∪ {∼ϕ} is unsatisfiable;

(c) if Γ |= ϕ and Γ |= ϕ ⊃ψ then Γ |=ψ;

(d) if Γ is satisfiable then every finite subset of Γ is also satisfiable;

(e) Monotony: if Γ ⊆∆ and Γ |= ϕ then also ∆ |= ϕ;

(f) Cut: if Γ |= ϕ and ∆∪ {ϕ} |=ψ then Γ ∪∆ |=ψ;

(g) Deduction Theorem: Γ |= ϕ ⊃ψ if and only if Γ ∪ {ϕ} |=ψ .

Proof theory for propositional logic

14. Definition: The set Ax of the axioms of propositional logic comprises all formulas of the following

forms:

[Ax1] ϕ ⊃ (ψ ⊃ ϕ);
[Ax2] (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ψ) ⊃ (ϕ ⊃ χ));
[Ax3] (∼ϕ ⊃ ∼ψ) ⊃ (ψ ⊃ ϕ).

15. Definition: If Γ is a set of formulas of L0 and ϕ a formula, then a proof of ϕ from Γ is a finite

sequence ϕ1, . . . ,ϕn of formulas such that ϕn = ϕ and for each i ≤ n one of the following holds:

É ϕi is an axiom; or

É ϕi ∈ Γ ; or

É there are j, k < i such that ϕ j is ϕk ⊃ ϕi .

The last clause just says that ϕi can be obtained from previously occurring ϕk and ϕk ⊃ ϕi by

Modus Ponens (MP). We write Γ ` ϕ (“Γ proves ϕ,” or “ϕ is provable from Γ ”) to mean that there is

a proof of ϕ from Γ . When Γ is empty, we write ` ϕ to mean ∅ ` ϕ. When all the formulas in Γ are

specified, curly brackets may be dropped. The theorems of Γ consist of all the formulas provable from

Γ : ThmΓ = {ϕ : Γ ` ϕ}.

16. Proposition: The following are provable:

(a) Transitivity: {ϕ ⊃ψ,ψ ⊃ θ} ` ϕ ⊃ θ ;

(b) Identity: ` ϕ ⊃ ϕ.
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Proof. For part (a), the following instances of Ax1 and Ax2 are needed:

(ψ ⊃ θ ) ⊃ (ϕ ⊃ (ψ ⊃ θ ));

(ϕ ⊃ (ψ ⊃ θ )) ⊃ ((ϕ ⊃ψ) ⊃ (ϕ ⊃ θ )). f

For part (b), consider the instance of Ax1: ϕ ⊃ ((ϕ ⊃ ϕ) ⊃ ϕ) and distribute the outermost implication

by Ax2.

17. Proposition: For any set Γ of formulas:

(a) if ϕ is an axiom then Γ ` ϕ;

(b) Reflexivity: if ϕ ∈ Γ then Γ ` ϕ;

(c) Closure under Modus Ponens: if Γ ` ϕ and Γ ` ϕ ⊃ψ then Γ `ψ
(d) Monotony: if Γ ⊆∆ and Γ ` ϕ then also ∆ ` ϕ;

(e) Γ ` ϕ if and only if there is a finite subset Γ0 of Γ such that Γ0 ` ϕ.

18. Theorem: ThmΓ is the smallest set of formulas containing both the axioms and every formula in

Γ , and that is closed under Modus Ponens (from ϕ and ϕ ⊃ψ infer ψ).

Proof. We know from Proposition 17 that ThmΓ has the desired properties; so we need to show that it is

the smallest such set. Let A be any other set of formulas containing the axioms and Γ and that is closed

under Modus Ponens. Prove that ThmΓ ⊆ A by induction on the length of a proof of ϕ from Γ .

19. Corollary: Principle of induction on theorems: any property P that holds of the axioms, of formulas

in Γ , and is preserved by Modus Ponens holds of every formula in Thm(Γ ).

20. Theorem: Deduction Theorem: Γ ∪ {ϕ} `ψ if and only if Γ ` ϕ ⊃ψ.

Proof. The “if” direction is immediate; if Γ ` ϕ ⊃ ψ then also Γ ∪ {ϕ} ` ϕ ⊃ ψ by Monotony, so there

is a proof of ϕ ⊃ψ from Γ ∪ {ϕ}, and one more application of Modus Ponens gives Γ ∪ {ϕ} `ψ.

For the converse, proceed by induction on theorems. If ψ ∈ Γ or ψ is an axiom then also Γ ` ψ ⊃
(ϕ ⊃ ψ) by Ax1, and Modus Ponens (and Monotony) gives Γ ∪ {ϕ} ` ϕ ⊃ ψ; and if ψ ∈ {ϕ} then

Γ ` ϕ ⊃ψ because the last sentence is the same as ϕ ⊃ ϕ.

For the inductive step, suppose ψ is obtained by modus ponens from θ ⊃ ψ and θ . Then Γ ∪ {ϕ} `
θ ⊃ψ and Γ ∪ {ϕ} ` θ . By the inductive hypothesis, both

Γ ` ϕ ⊃ (θ ⊃ψ);

Γ ` ϕ ⊃ θ .

But also

Γ ` (ϕ ⊃ (θ ⊃ψ)) ⊃ ((ϕ ⊃ θ ) ⊃ (ϕ ⊃ψ)),

by Ax2, and two applications of Modus Ponens give Γ ` ϕ ⊃ψ, as required.
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Notice how Ax1 and Ax2 were chosen precisely so that the Deduction Theorem would hold. The

following proposition collects useful facts about provability that will be needed in the next section.

21. Proposition: The following are all provable:

(a) ` (ϕ ⊃ψ) ⊃ ((ψ ⊃ θ ) ⊃ (ϕ ⊃ θ ));
(b) Contraposition: if Γ ∪ {∼ϕ} ` ∼ψ then Γ ∪ {ψ} ` ϕ;

(c) Ex Falso Quodlibet: {ϕ,∼ϕ} `ψ;

(d) Double Negation: {∼∼ϕ} ` ϕ;

(e) if Γ ` ∼∼ϕ then Γ ` ϕ;

Proof. Part (a) follows from Prop. 16, part (a) by two applications of the Deduction Theorem. For part

(b):
1. Γ ∪ {∼ϕ} ` ∼ψ hyp.

2. Γ ` ∼ϕ ⊃ ∼ψ Ded. Thm., 1

3. Γ ` (∼ϕ ⊃ ∼ψ) ⊃ (ψ ⊃ ϕ) Ax3 and Monotony

4. Γ `ψ ⊃ ϕ MP, 2, 3

5. Γ ∪ {ψ} ` ϕ Ded. Thm., 4

For part (c) we have {∼ϕ,∼ψ} ` ∼ϕ by Reflexivity, and {ϕ,∼ϕ} ` ψ follows by Prop 17, part (b).

Part (d): since {∼∼ϕ,∼ϕ} ` ∼∼∼ϕ by Ex Falso Quodlibet, apply (b). Now for part (e), Γ ` ∼∼ϕ ⊃ ϕ
by the previous part, the Deduction Theorem, and Monotony, so if Γ ` ∼∼ϕ also Γ ` ϕ by MP.

22. Theorem: Cut: if Γ ` ϕ and ∆,ϕ ` θ then Γ ∪∆ ` θ .

Proof. The following shows that the conclusion is derivable:
1. Γ ` ϕ hyp.

2. Γ ∪∆ ` ϕ Monotony, 1

3. ∆,ϕ ` θ hyp.

4. Γ ∪∆,ϕ ` θ Monotony, 3

5. Γ ∪∆ ` ϕ ⊃ θ Ded. Thm., 4

6. Γ ∪∆ ` θ MP, 2, 5

23. Lemma: ϕ ⊃ψ,ϕ `ψ.

Proof. By Reflexivity, ϕ ⊃ψ ` ϕ ⊃ψ. Apply the Deduction Theorem.

24. Lemma: ϕ ⊃ ∼ϕ ` ∼ϕ.

Proof. The following shows the conclusion is derivable.
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1. ∼∼ϕ ` ϕ Double Neg.

2. ∼∼∼∼ϕ ` ∼∼ϕ Double Neg.

3. ∼∼(ϕ ⊃ ∼ϕ) ` ϕ ⊃ ∼ϕ Double Neg.

4. ∼ϕ ` ∼∼∼ϕ Contraposition, 2

5. ∼∼(ϕ ⊃ ∼ϕ),ϕ ` ∼ϕ Ded. Thm., 3

6. ∼∼ϕ,∼∼(ϕ ⊃ ∼ϕ) ` ∼ϕ Cut, 1, 5

7. ∼∼ϕ,∼∼(ϕ ⊃ ∼ϕ) ` ∼∼∼ϕ Cut 4, 6

8. ∼∼ϕ ` ∼(ϕ ⊃ ∼ϕ) Contraposition, 7

9. (ϕ ⊃ ∼ϕ) ` ∼ϕ Contraposition, 8

25. Proposition: The following hold:

(a) ψ ` ∼∼ψ
(b) ϕ ⊃ ∼ψ,ψ ` ∼ϕ
(c) ϕ ⊃ψ,ϕ ⊃ ∼ψ ` ∼ϕ.

(d) if Γ ∪ {ϕ} `ψ and Γ ∪ {ϕ} ` ∼ψ then Γ ` ∼ϕ.

Proof. For part (a), we have ∼∼∼ψ ` ∼ψ by double negation, whence ψ ` ∼∼ψ by Prop. 21, part

(b). For part (b) we have:
1. ` (∼∼ϕ ⊃ ∼∼∼ψ) ⊃ (∼∼ψ ⊃ ∼ϕ) Ax3

2. ∼∼ϕ ⊃ ∼∼∼ψ,∼∼ψ ` ∼ϕ Ded. Thm., twice, 1

3. ψ ` ∼∼ψ Double Neg.

4. ∼∼ϕ ⊃ ∼∼∼ψ,ψ ` ∼ϕ Cut, 2, 3

5. ∼ψ ⊃ ∼∼∼ψ,ϕ ⊃ ∼ψ ` ϕ ⊃ ∼∼∼ψ Transitivity

6. ` ∼ψ ⊃ ∼∼∼ψ Double Neg. + Ded. Thm.

7. ϕ ⊃ ∼ψ ` ϕ ⊃ ∼∼∼ψ 5, 6, Cut

8. ` ∼∼ϕ ⊃ ϕ Double Neg. + Ded. Thm.

9. ∼∼ϕ ⊃ ϕ,ϕ ⊃ ∼∼∼ψ ` ∼∼ϕ ⊃ ∼∼∼ψ Transitivity

10. ϕ ⊃ ∼∼∼ψ ` ∼∼ϕ ⊃ ∼∼∼ψ Cut, 8, 9

11. ϕ ⊃ ∼ψ ` ∼∼ϕ ⊃ ∼∼∼ψ Cut, 7 10

12. ϕ ⊃ ∼ψ,ψ ` ∼ϕ Cut, 4, 11

Part (c) follows because:
1. ϕ ⊃ψ,ϕ `ψ Lemma 23

2. ϕ ⊃ ∼ψ,ψ ` ∼ϕ part (b)

3. ϕ ⊃ψ,ϕ ⊃ ∼ψ,ϕ ` ∼ϕ Cut, 1, 2

4. ϕ ⊃ψ,ϕ ⊃ ∼ψ ` ϕ ⊃ ∼ϕ Ded. Thm., 3

5. ϕ ⊃ ∼ϕ ` ∼ϕ Lemma 24

6. ϕ ⊃ψ,ϕ ⊃ ∼ψ ` ∼ϕ Cut, 4, 5.
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Finally, for part (d): from the hypotheses by the Deduction Theorem, Γ ` ϕ ⊃ψ and Γ ` ϕ ⊃ ∼ψ; from

part (c) and Monotony, Γ ,ϕ ⊃ψ,ϕ ⊃ ∼ψ ` ∼ϕ; two applications of Cut give the desired result.

26. Definition: A set Γ of formulas is consistent if and only if there is a formula ϕ such that Γ 6` ϕ; it is

inconsistent otherwise.

27. Proposition: Γ is inconsistent if and only if there is a formula ϕ such that both Γ ` ϕ and Γ ` ∼ϕ.

Proof. The “only if” direction is obvious. For the converse, suppose that Γ ` ϕ and Γ ` ∼ϕ. Then by

Proposition 21, part (c) and Monotony, Γ ∪ {ϕ,∼ϕ} `ψ for any formula ψ, and now two applications

of Cut give Γ `ψ for any ψ, so Γ is inconsistent.

28. Proposition: Γ ` ϕ if and only if Γ ∪ {∼ϕ} is inconsistent.

Proof. If Γ ` ϕ then also Γ ,∼ϕ ` ϕ by Monotony, and Γ ,∼ϕ ` ∼ϕ by Reflexivity, so Γ ∪ {∼ϕ} is

inconsistent. Conversely, suppose Γ ∪ {∼ϕ} is inconsistent. Then by Proposition 27, Γ ,∼ϕ ` θ and

Γ ,∼ϕ ` ∼θ for some θ . By Proposition 25 part (d), Γ ` ∼∼ϕ. But also ∼∼ϕ ` ϕ, by Double

Negation, so that by Cut, Γ ` ϕ.

29. Proposition: If Γ is consistent, then for any formula ϕ, either Γ ∪ {ϕ} is consistent or Γ ∪ {∼ϕ} is

consistent.

Proof. From Proposition 28 we have that if Γ ∪ {∼ϕ} is inconsistent, then Γ ` ϕ; if Γ ∪ {ϕ} is also

inconsistent, then Γ ∪ {ϕ} `ψ for any ψ. But then by Cut, Γ `ψ for any ψ, so Γ is inconsistent.

30. Proposition: Γ is consistent if and only if every finite subset Γ0 ⊆ Γ is consistent.

Proof. For the non-trivial direction: if Γ is inconsistent, then Γ `ψ and Γ ` ∼ψ for some ψ; each proof

involves only finitely many formulas from Γ . Collect the ones occurring in the first proof into the finite

set Γ1, and those occurring in the second proof into the finite set Γ2. Then Γ0 = Γ1 ∪ Γ2 is a finite subset

of Γ that is inconsistent.

31. Exercise: Show that the following hold by exhibiting proofs from the axioms (i.e., without using

meta-theoretic facts such as Cut, Monotony, the Deduction Theorem, etc.):

(a) {ϕ ⊃ψ,ψ ⊃ θ} ` ϕ ⊃ θ ;

(b) ` ϕ ⊃ ϕ;

(c) ` ∼ϕ ⊃ (ϕ ⊃ψ);
(d) ` ϕ ⊃ (∼ϕ ⊃ψ).
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Soundness and Completeness of propositional logic

32. Theorem: Soundness: If Γ ` ϕ then Γ |= ϕ.

Proof. By induction on theorems. If ϕ is an axiom then |= ϕ and hence vacuously Γ |= ϕ. Similarly if

ϕ ∈ Γ , Γ |= ϕ. For the inductive step, suppose ϕ is obtained by Modus Ponens from θ and θ ⊃ ϕ; also

assume as inductive hypothesis that the theorem holds for θ ⊃ ϕ and θ . Exercise 13, part (c) gives the

desired result.

33. Corollary: If Γ is satisfiable, then Γ is consistent. Hence, propositional logic is consistent.

34. Definition: A set Γ of formulas is maximally consistent if it is consistent and if ∆ is a consistent set

such that Γ ⊆∆ then Γ =∆.

35. Proposition: Truth Lemma: let Γ be maximally consistent; then:

(a) Γ ` ϕ if and only if ϕ ∈ Γ ;
(b) ϕ ∈ Γ if and only if ∼ϕ /∈ Γ ;
(c) ϕ ⊃ψ ∈ Γ if and only if either ϕ /∈ Γ or ψ ∈ Γ .

Proof. By the way of example, let ϕ ∈ Γ ; if also ∼ϕ ∈ Γ , then Γ is inconsistent; and if neither ϕ nor

∼ϕ is in Γ then by Proposition 29 one of Γ ∪{ϕ} and Γ ∪{∼ϕ} is consistent, which means that Γ is not

maximal.

The left-to-right of item (a) of the Truth Lemma is the deductive closure of Γ , i.e., if Γ ` ϕ then ϕ ∈ Γ .

36. Theorem: If Γ is consistent then Γ is satisfiable.

Proof. Let ϕ0,ϕ1, . . . be an exhaustive listing of all the formulas of the language. Recursively define an

increasing sequence of sets of formulas Γ0, Γ1, . . ., by putting:

Γ0 = Γ

Γn+1 =







Γn ∪ {ϕn} if Γn ∪ {ϕn} is consistent;

Γn ∪ {∼ϕn} otherwise.

Then define:

Γ ∗ =
⋃

0≤n
Γn.

The proof now proceeds by establishing, in turn, the following facts:

(a) For each n, the set Γn is consistent (by induction on n, using Proposition 29);

(b) Γ ∗ is consistent;

(c) Γ ∗ is maximal.
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Then define a valuation v by putting v(pi) = t if and only if pi ∈ Γ ∗. By induction on ϕ it is then shown

that membership in Γ ∗ coincides with truth according to v also for more complex sentences: v(ϕ) = t

if and only if ϕ ∈ Γ ∗. In particular, v satisfies Γ ∗, and since Γ ⊆ Γ ∗, also Γ is satisfiable, as desired.

37. Corollary: Completeness: If Γ |= ϕ then Γ ` ϕ.

Proof. If Γ 6` ϕ then Γ ∪{∼ϕ} is consistent, by Proposition 28. So by the theorem Γ ∪{∼ϕ} is satisfiable,

so Γ 6|= ϕ.

38 . Proposition: Compactness Theorem: Γ is satisfiable if and only if every finite subset Γ0 of Γ is

satisfiable.

Proof. Γ is unsatisfiable if and only if it is inconsistent, if and only if some finite subset Γ0 of Γ is incon-

sistent, if and only if some finite subset Γ0 of Γ is unsatisfiable.

39. Corollary: Γ |= ϕ if and only if for some finite subset Γ0 of Γ , Γ0 |= ϕ.

Part III

The predicate case

Preliminaries

A language L1 of classical predicate logic comprises the connectives ∼ and ⊃, the universal quantifier

∀, parentheses ( and ) as well as:

É denumerably many individual variables v0, v1, . . .;

É countably many (i.e., finitely or denumerably many) individual constants c0, c1, . . .;

É for each n > 0, countably many n-place predicate symbols, including at least the 2-place symbol
.
= for identity;

É for each n> 0, countably many n-place function symbols.

40. Definition: We define the sets comprising the terms, atomic formulas and formulas of L1:

É The set T1 of the terms ofL1 is defined as the smallest set containing the constants, the variables,

and such that if t1, . . . , tn are terms and f is an n-place function symbol, then f t1 . . . tn is also a

term.

É The set At1 of the atomic formulas of L1 comprises all expressions of the form P t1 . . . tn, where

t1, . . . , tn are terms and P is an n-place predicate symbol, as well as all expressions of the form

t1
.
= t2.

É The set F1 of the formulas of L1 is defined as the smallest set containing the atomic formulas

and such that if ϕ and ψ are formulas and x is a variable, then (∼ϕ), (ϕ ⊃ ψ) and (∀xϕ) are

formulas (the formula ϕ is the scope of the quantifier ∀x).
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We adopt the same conventions for dropping parentheses as in the propositional case as well as the

same abbreviations for (ϕ ∧ψ) and (ϕ ∨ψ). Moreover, we abbreviate ∼∀x∼ϕ by ∃xϕ. Just as in the

propositional case, we have a principle of induction on both terms and formulas, as well as a principle of

definition by recursion (also on both terms and formulas).

41. Definition: The following notions relate to the occurrence of variables in formulas:

1. A variable x occurs free in a formula ϕ if it does not fall within the scope of a quantifier ∀x . (If

x falls within the scope of ∀x , then x is bound by ∀x .) This can be defined recursively on the

complexity of ϕ: x is always free in ϕ if ϕ ∈ At1; x is free in ∼ψ or ψ ⊃ θ if it is free in ψ or θ ;

and x is free in ∀yψ if it is free in ψ and not the same variable as y .

2. If ϕ is a formula and x1, . . . , xn are distinct variables, we denote by ϕ(x1, . . . , xn) the fact that all

of the variables occurring free in ϕ are among x1, . . . , xn.

3. If no variable occurs free in ϕ, then ϕ is a sentence.

42. Definition: We define a substitution instance for x in t, t[t ′/x], as the result of replacing t ′ for every

occurrence of x in t, recursively on the complexity of t: if t is a constant c or a variable other than x

then t[t ′/x] is just t; if t is x then t[t ′/x] is t ′; and if t is f t1 . . . tn then t[t ′/x] is f t1[t
′/x] . . . tn[t

′/x].

43. Definition: We define a substitution instance for x in ϕ, ϕ[t/x], as the result of replacing t for every

free occurrence of x in ϕ, recursively on the complexity of ϕ:

É if ϕ is P t1 . . . tn or t1
.
= t2 then ϕ[t/x] is P t1[t/x] . . . tn[t/x] or t1[t/x]

.
= t2[t/x], respectively;

É if ϕ is ∼ψ or ψ ⊃ θ then ϕ[t/x] is ∼ψ[t/x] or ψ[t/x] ⊃ θ[t/x], respectively;

É if ϕ is ∀yψ (where y is a variable other than x), then ϕ[t/x] is ∀yψ[t/x];

É if ϕ is ∀xψ then ϕ[t/x] is just ϕ.

More generally, we understand Definition 43 to extend to substitution for a constant c.

44. Definition: A term t is free for x in ϕ if x does not occur in ϕ within the scope of a quantifier ∀y

binding a variable y occurring in t.

Needless to say, the previous definition can be more precisely given as a recursion on ϕ.

Semantics of predicate logic

45. Definition: A structure A for L1 provides a non empty domain or universe |A|= A as well as:

(a) for each constant symbol c of L1, an element cA ∈ A;

(b) for each n-place predicate symbol P of L1 (other than
.
=), an n-ary relation PA ⊆ An;

(c) for each n-place function symbol f of L1, an n-ary function f A : An→ A.

46. Definition: An assignment to the variables is a function s that assigns to each variable x a member

s(x) of A. If s is an assignment, x a variable, and a ∈ A, then s(a/x) is the assignment defined as follows:

s(a/x)(y) =







a, if y is x;

s(y), otherwise.
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The function s(a/x) is the result of shifting s at x and is called an x-variant of s.

47. Proposition: Each assignment can be “lifted” to a function s : T1 → A assigning a member s(t) of

the domain A to each term t in T1, recursively as follows:

s(x) = s(x),

s(c) = cA,

s( f t1, . . . , tn) = f A(s(t1), . . . , s(tn)).

48. Theorem: Local Determination I: If s1 and s2 are assignments that agree on the variables occurring

in a term t, then they assign the same denotation to t, i.e., s1(t) = s2(t).

Proof. By induction on t.

49. Definition: The notion of satisfaction of a formula ϕ(x1, . . . , xn) by an assignment s in a structure

A, written A |= ϕ[s], is defined by recursion on ϕ:

É A |= P t1 . . . tn[s] if and only if 〈s(t1), . . . , s(tn)〉 ∈ PA;

É A |= (t1
.
= t2)[s] if and only if s(t1) = s(t2);

É A |= (∼ϕ)[s] if and only if A 6|= ϕ[s];
É A |= (ϕ ⊃ψ)[s] if and only if either A 6|= ϕ[s] or A |=ψ[s];
É A |= (∀xϕ)[s] if and only if A |= ϕ[s(a/x)] for every a ∈ A.

50. Theorem: Local Determination II: If s1 and s2 are assignments that agree on the variables occurring

free in a formula ϕ, then A |= ϕ[s1] if and only if A |= ϕ[s2].

Proof. By induction on ϕ.

51. Corollary: If ϕ is a sentence, then A |= ϕ[s] for some s if and only if A |= ϕ[s] for every s.

52. Corollary: A |= ϕ[s] for every structure A and assignment s, if and only if A |= ∀xϕ[s] for every

structure A and assignment s.

53. Definition: The following notions concern the satisfaction of formulas and sets thereof:

1. A sentence ϕ is true in a structure A, written A |= ϕ, if and only if for some (equivalently: every)

assignment s, A |= ϕ[s].
2. Where Γ is a set of formulas, s satisfies Γ in A, written A |= Γ [s], if and only if A |= ϕ[s] for every

ϕ in Γ .

3. Γ entails ϕ, written Γ |= ϕ, if and only if for every structure A and assignment s, if A |= Γ [s], then

A |= ϕ[s].

54. Substitution Theorem: Let A be a structure:

1. for every assignment s in A and for all termsfor z in ϕ; x , y not in t, t ′ or ϕ t and t ′, s(t[t ′/x]) =

s(s(t ′)/x)(t);
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2. if t is free for x in ϕ, then for every assignment s: A |= ϕ[t/x][s] if and only if A |= ϕ[s(s(t)/x)]

Proof. By induction on t and ϕ. At the inductive step for ∀yϕ (with y a variable other than x), the

inductive hypothesis is employed as follows: since t is free for x in ∀yϕ, the variable y does not occur

in t, and hence s and s(a/y) agree on t, by Local Determination. Notice that the full inductive hypothesis

quantifying over all s is needed, in order to instantiate with s(a/y).

Proof theory of predicate logic

55. Definition: A formula ϕ of predicate logic is a tautological instance if and only if there is a tau-

tology ψ(p1, . . . , pn) of propositional logic and formulas θ1, . . . ,θn of predicate logic such that ϕ =

ψ[θ1/p1, . . . , θn/pn], i.e., ϕ is the result of substituting θi for each pi in ψ(p1, . . . , pn).

56. Definition: The set Ax of the axioms of predicate logic comprises all formulas obtained by prefixing

any number of (or no) universal quantifiers to the following:

[Ax0] ϕ, where ϕ is a tautological instance;

[Ax1] ∀xψ ⊃ψ[t/x], if t is free for x in ψ;

[Ax2] ∀x(ϕ ⊃ψ) ⊃ (∀xϕ ⊃ ∀xψ);

[Ax3] ψ ⊃ ∀xψ, if x is not free in ψ;

[Ax4] x
.
= x;

[Ax5] x
.
= y ⊃ (ψ[x/z] ⊃ψ[y/z]), if both x and y are free for z in ψ.

57. Definition: A proof from Γ is a finite sequence of formulas, each one of which is either an axiom,

or a member of Γ , or is obtained by previous formulas by Modus Ponens. A formula ϕ is provable from

Γ , written Γ ` ϕ, if there is a proof from Γ ending in ϕ.

58. Definition: ThmΓ = {ϕ : Γ ` ϕ}.

59. Proposition: ThmΓ is the smallest set of formulas containing Γ and the axioms, and is closed under

Modus Ponens. Accordingly, we have a principle of proof by induction on the theorems of Γ .

For example, let us show that ∀xψ ` ∃xψ (where the formula on the right of the turnstile is just an

abbreviation for ∼∀x∼ψ):
1. ∀x∼ψ ⊃ ∼ψ[c/x] Ax1: c free for x in ∼ψ
2. (∀x∼ψ ⊃ ∼ψ[c/x]) ⊃ (ψ[c/x] ⊃ ∼∀x∼ψ)) Ax0

3. ψ[c/x] ⊃ ∼∀x∼ψ MP, 1, 2

4. ∀xψ ⊃ψ[c/x] Ax1: c free for x in ψ

5. ∀xψ hyp.

6. ψ[c/x] MP, 4, 5

7. ∼∀x∼ψ MP, 3, 6

Since tautological instances are all axioms, the following proposition follows immediately by n applica-

tions of modus ponens. Accordingly, from now on we freely employ purely propositional steps in proofs

and justify them by reference to “Proposition T.”
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60. Proposition T: If Γ ` ϕ1, . . . , Γ ` ϕn, and ϕ1 ⊃ (ϕ2 ⊃ · · · ⊃ (ϕn ⊃ψ) · · · ) is a tautological instance,

then Γ `ψ.

Proof. The formula ϕ1 ⊃ (ϕ2 ⊃ · · · ⊃ (ϕn ⊃ ψ) · · · ) is a tautological instance and hence an axiom; n

applications of MP give the desired result., it is required to be shown that

61. Remark: Since the axioms for predicate logic include the substitution instances of all the proposi-

tional axioms, and the only rule (viz., MP) is the same, all the propositional proof-theoretic properties

such the Deduction Theorem, Cut, Monotony, etc., carry over to the predicate case, as does Definition

26 of consistency and inconsistency.

62. Theorem: (Generalization) If Γ ` ϕ and x is not free in any formula in Γ , then Γ ` ∀xϕ.

Proof. By induction on ThmΓ : if ϕ is an axiom, so is ∀xϕ. If ϕ ∈ Γ then x is not free in ϕ, so that

ϕ ⊃ ∀xϕ is an axiom (Ax3), and Γ ` ∀xϕ by MP. Now suppose ϕ follows by MP because Γ ` ψ and

Γ `ψ ⊃ ϕ. By the inductive hypothesis, Γ ` ∀xψ and Γ ` ∀x(ψ ⊃ ϕ). But by Ax2 also

Γ ` ∀x(ψ ⊃ ϕ) ⊃ (∀xψ ⊃ ∀xϕ),

and two applications of MP give Γ ` ∀xϕ as desired.

63. Theorem: (Weak Generalization on Constants) Let ϕ[x/c] designate the result of substituting x for

all occurrences of c in ϕ. If Γ ` ϕ and c is a constant not in occurring in Γ , then there is a variable x

not in ϕ such that Γ ` ∀x ϕ[x/c], and the proof does not involve c.

Proof. Let ϕ1, . . . ,ϕn be a proof of ϕ from Γ , so that ϕ = ϕn. Pick a variable x not in ϕ1, . . . ,ϕn, and

consider the new sequence: ϕ1[x/c], . . . ,ϕn[x/c]. Such a sequence is a proof of ϕ[x/c] from Γ . In fact,

for each i = 1, . . . , n:

É if ϕi is an axiom, then so is ϕi[x/c];

É if ϕi ∈ Γ , then since c is not in Γ , we have ϕi[x/c] = ϕi ∈ Γ ;
É ifϕi is obtained fromϕ j andϕ j ⊃ ϕi thenϕi[x/c] follows by MP fromϕ j[x/c] and (ϕ j ⊃ ϕi)[x/c] =

ϕ j[x/c] ⊃ ϕi[x/c].

It is clear that the constant c no longer occurs in the new sequence. Now let Γ ′ comprise those formulas

from Γ that appear in the proof of ϕ[x/c]; then x is not free in any formula in Γ ′ and Γ ′ ` ϕ[x/c]. By

Generalization (Theorem 62) Γ ′ ` ∀x ϕ[x/c], whence by Monotony Γ ` ∀x ϕ[x/c], as desired.

Our goal is to replace the requirement in Theorem 63 that x does not occur in ϕ (at all) by the

weaker requirements that x is not free in ϕ and is free for c in ϕ. Clearly this can be accomplished by

a change of bound variable — so that is what we set out to prove first.

64. Lemma: If x is free for c in ϕ and y is not free in ϕ, then x is free for y in ϕ[y/c].
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Proof. If x is not free for y in ϕ[y/c], then some free occurrence of y in ϕ[y/c] falls within the scope of a

quantifier ∀x . But y is not free in ϕ, by hypothesis, so all such occurrences come from the substitution

[y/c]. So some occurrence of c falls within the scope of ∀x , and x is not free for c in ϕ.

65. Lemma: (Change of Bound Variable) If x and y are not free in ϕ and they are both free for c in ϕ,

then ` ∀xϕ[x/c]≡ ∀yϕ[y/c], and the proof does not involve c.

Proof. From the hypotheses, y is free for c in ϕ and x is not free in ϕ, so by the previous Lemma 64, y

is free for x in ϕ[x/c]. It follows that ∀xϕ[x/c] ⊃ ϕ[x/c][y/x] is an axiom (Ax1). Since x is not free in

ϕ, we have ϕ[x/c][y/x] = ϕ[y/c], so that

` ∀xϕ[x/c] ⊃ ϕ[y/c],

and by the Deduction Theorem ∀xϕ[x/c] ` ϕ[y/c]. Since y is not free in ϕ, it also not free in ∀xϕ[x/c],

so that by Generalization ∀xϕ[x/c] ` ∀yϕ[y/c], and the Deduction Theorem again gives ` ∀xϕ[x/c] ⊃
∀yϕ[y/c]. The proof of ` ∀yϕ[y/c] ⊃ ∀xϕ[x/c] is perfectly symmetric, so that the conclusion follows

by Proposition T.

66. Theorem: (Strong Generalization on Constants) If Γ ` ϕ, the constant c does not occur in Γ , and x

is not free in ϕ but is free for c in ϕ, then Γ ` ∀x ϕ[x/c].

Proof. Since Γ ` ϕ and c is not in Γ , then by Weak Generalization on Constants there is a variable y not

in ϕ such that Γ ` ∀y ϕ[y/c]. Since y is not in ϕ (at all), it is not free in ϕ and it is also free for c in ϕ;

if moreover (by hypothesis) x is not free in ϕ and free for c in ϕ, then the requirements for a change of

bound variable are met, so ` ∀x ϕ[x/c]≡ ∀y ϕ[y/c], whence Γ ` ∀x ϕ[x/c].

We conclude this section by collecting facts about identity.

67. Proposition: Γ ` t
.
= t, for any term t and set Γ .

Proof. ∀x(x
.
= x) is an axiom, and any term t is free for x in x

.
= x .

68. Proposition: If Γ ` (ϕ[x/z] ⊃ ψ[y/z]) and Γ ` t
.
= t ′, and both t and t ′ are free for z in ϕ, then

Γ ` (ϕ[x/z] ⊃ψ[y/z]).

Proof. Pick variables x and y not occurring ϕ, t, or t ′ (at all). Then

∀x∀y(x
.
= y ⊃ ((ψ[x/z] ⊃ ϕ[y/z]) ⊃ (ϕ[x/z] ⊃ψ[y/z])))

is an axiom (Ax5), since x and y are free for z in ϕ. By Ax1, Monotony, and MP (twice), Γ ` (t .
= t ′ ⊃

((ϕ[x/z] ⊃ ψ[y/z]) ⊃ (ϕ[x/z] ⊃ ψ[y/z])), whence the conclusion follows by two further applications of

MP.
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Soundness and completeness of predicate logic

69. Proposition: Ifϕ is an axiom of predicate logic, then A |= ϕ[s] for each structure A and assignment

s.

Proof. We first verify that the schemas Ax0–Ax5 are valid. For instance, here is the case for Ax1: suppose

t is free for x in ϕ, and assume A |= ∀xϕ[s]. Then by definition of satisfaction, for each a ∈ A, also

A |= ϕ[s(a/x)], and in particular this holds when a = s(t), i.e., A |= ϕ[s(s(t)/x)]. By the Substitution

Theorem, A |= ϕ[t/x][s]. This shows that A |= (∀xϕ ⊃ ϕ[t/x])[s]. After verifying the schemas, we see

that their universal closures are also valid, by Corollary 52.

70. Theorem: (Soundness) If Γ ` ϕ then Γ |= ϕ.

Proof. By induction on theorems. By the previous proposition, all the axioms are valid, and hence if ϕ

is an axiom then Γ |= ϕ. Similarly if ϕ ∈ Γ . And if Γ `ψ and Γ `ψ ⊃ ϕ then Γ |= ϕ.

71. Theorem: (Completeness) If Γ |= ϕ then Γ ` ϕ.

3, 6,

This follows as a corollary, in the usual way, from the theorem that if Γ is consistent then Γ is satis-

fiable (Theorem 80 below). Some more work is needed before we can give the proof. In particular, in

order to prove the theorem, assuming that Γ is satisfiable, we will build a structure A and an assignment

s satisfying Γ . In so doing we need to extend Γ to a maximally consistent set Γ ∗, in such a way that if

a formula ∃xϕ is in the set, ϕ[t/x] is also in the set for some t. This is arranged by making sure that

the maximally consistent set Γ ∗ extending Γ contains all formulas ∃xϕ ⊃ ϕ[t/x] for some appropriate

witness t.

72. Lemma: Let L and L ′ be languages of classical predicate logic. If Γ is consistent in L and L ′ is

obtained from L by adding countably many new constants c0, c1, . . ., then Γ is consistent in L ′.

Proof. Let L ′ be obtained by expanding L as described. If Γ is consistent in L but not consistent in

L ′, then for some formula θ (c1, . . . , cn) ∈ L ′ both Γ ` θ and Γ ` ∼θ . By hypothesis the finitely many

new constants c1, . . . , cn occurring in θ do not occur in Γ . By Strong Generalization on Constants there

are variables x1, . . . , xn not in θ such that the following are provable in L :

Γ ` ∀x1 . . .∀xn θ[x1/c1, . . . , xn/cn],

Γ ` ∀x1 . . .∀xn∼θ[x1/c1, . . . , xn/cn].

Since in particular the variables x1, . . . , xn are free for the corresponding constants c1, . . . , cn, by Ax1
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also

Γ ` θ[x1/c1, . . . , xn/cn],

Γ ` ∼θ[x1/c1, . . . , xn/cn],

and Γ is inconsistent in L ′.

73. Definition: A set ∆ of formulas of a languageL is saturated if and only if for each formula ϕ ∈ L
and variable x there is a constant c such that ∼∀xϕ ⊃ ∼ϕ[c/x] is in ∆.

74. Definition: Fix an enumeration 〈ϕ0, x0〉, 〈ϕ1, x1〉, . . . of all formula-variable pairs ofL ′, and define

the formula θn by recursion on n. For θ0 let c0 be the first new constant that does not occur in ϕ0 and

let θ0 be the formula ∼∀x0ϕ0 ⊃ ∼ϕ0[c0/x0]. Assuming θ0, . . . ,θn have been defined, denote by cn+1

the first new constant not occurring in θ0, . . .θn or ϕn+1, and let θn+1 be the formula: ∼∀xn+1ϕn+1 ⊃
∼ϕn+1[cn+1/xn+1]. Finally, put Θ = {θn : n≥ 0}.

75. Proposition: (Saturation) Every consistent set Γ can be extended to a saturated consistent set.

Proof. Given a consistent Γ , expand the language by adding countably many new constants. By Lemma

72, Γ is still consistent in the richer language. Further, letΘ be as in Definition 74; then Γ∪Θ is saturated

by construction. To show that it is also consistent it suffices to show, by induction on n, that each set of

the form Γ ∪ {θ0, . . .θn} is consistent.

For the basis of the induction, suppose that Γ ∪{θ0} is inconsistent. It follows by Proposition 28 that

Γ ` ∼θ0, whence both the following hold by Proposition T:

Γ ` ∼∀x0ϕ0, Γ ` ϕ0[c0/x0].

But c0 does not occur in Γ and the variable x0 is not free in ϕ0[c0/x0]. Moreover, x0 is free for c0

in ϕ0[c0/x0] (since by choice of c0 the only occurrences of c0 in ϕ0[c0/x0] derive from the substitution

[c0/x0] and therefore fall outside the scope of any quantifier binding x0). By Strong Generalization on

Constants, from the latter of these we obtain Γ ` ∀x0ϕ0[c0/x0][x0/c0], i.e., Γ ` ∀x0ϕ0, and Γ itself is

inconsistent. The inductive step is perfectly analogous.

76. Proposition: Every consistent set Γ can be extended to a maximally consistent saturated set Γ ∗.

Proof. Let Γ be consistent, andΘ as in Definition 74. By proposition 75, Γ∪Θ is a consistent saturated set

in the richer language with the countably many new constants. We define Γ ∗ exactly as in propositional

logic: let ϕ0,ϕ1, . . . be an enumeration of all the formulas of L ′. Define Γ0 = Γ ∪Θ and

Γn+1 =







Γn ∪ {ϕn} if Γn ∪ {ϕn} is consistent;

Γn ∪ {∼ϕn} otherwise.
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Putting Γ ∗ =
⋃

n≥0 Γn, we obtain a maximally consistent set in L ′; since Γ ∪Θ is saturated, so is Γ ∗.

Our plan is to extract from Γ ∗ a structure A′ satisfying Γ ∗ in L ′, which can then be turned into a

structure A satisfying Γ inL simply by “forgetting” the interpretation of the new constants cn. However,

if the universe A′ of A′ is simply taken to be the set of all closed terms, this leads to a problem, in that

we might have Γ ∗ ` t1
.
= t2 for distinct terms t1 and t2. This motivates the following definition of an

equivalence relation and the corresponding detour through the resulting quotient.

77. Definition: Define a relation ≈ over the set of terms of L ′ by setting t ≈ t ′ if and only Γ ∗ ` t
.
= t ′.

78. Lemma: The relation ≈ is an equivalence relation over the terms of L ′.

Proof. Reflexivity is given by Proposition 67; symmetry and transitivity follow, in a similar way to Propo-

sition 68. For instance, symmetry: by Ax5 and Ax1, Γ ∗ ` t
.
= t ′ ⊃ (t .

= t ⊃ t ′
.
= t), so that if t ≈ t ′ then

Γ ∗ ` t
.
= t ′; but also Γ ∗ ` t

.
= t, as we just saw, so Γ ∗ ` t ′

.
= t, i.e., t ′ ≈ t.

79. Definition: For each term t of L ′, the equivalence class {t ′ : t ≈ t ′} of t relative to ≈ is denoted

by [t].

We are now ready to complete the proof of the main theorem.

80. Theorem: If Γ is consistent then Γ is satisfiable.

Proof. Given a consistent Γ , we extend it to a maximally consistent saturated set Γ ∗ of formulas of L ′,
using Proposition 76. We define a structure A′ for L ′ and an assignment s as follows:

É |A′|= A′ = {[t] : t ∈ L ′};
É cA

′
= [c] for each constant c of L ′.

É 〈[t1], . . . , [tn]〉 ∈ PA′ if and only if Γ ∗ ` P t1 . . . tn, for each n-place predicate symbol P;

É f A
′
([t1], . . . , [tn]) = [ f t1 . . . tn], for each n-place function symbol f ;

É s(x) = [x].

It is important to notice that the definitions3, 6, of PA′ and f A
′
are “independent of the representatives,”

since the relation ≈ is a congruence with respect to PA′ and f A
′
. For instance, if t ≈ t ′ then Γ ∗ ` t

.
=

t ′ whence also Γ ∗ ` f t1 . . . t . . . tn
.
= f t1 . . . t ′ . . . tn so that f t1 . . . t . . . tn ≈ f t1 . . . t ′ . . . tn. It follows

that f A
′
([t1], . . . , [t], . . . , [tn]) = f A

′
([t1], . . . , [t ′], . . . , [tn]) and the definition is independent of the

representatives.

Next, one easily shows that for each term t, s(t) = [t] (by induction on t). Similarly, we prove that

A′ |= ϕ[s] if and only if ϕ ∈ Γ ∗, whence in particular s satisfies Γ ∗. The proof that A′ |= ϕ[s] if and only

if ϕ ∈ Γ ∗ is by induction on ϕ, the crucial case being the one for the universal quantifier:

• If A′ 6|= ∀xψ[s], then for some term t, A′ 6|= ψ[s([t]/x)], i.e., A′ 6|= ψ[s(s(t)/x)]. Using Lemma 65

(Change of Bound Variable), successively rename each quantifier ∀y in ψ as needed to obtain a

formula ψ′ such that t is free for x in ψ′ and ` ψ ≡ ψ′. It follows that A′ 6|= ψ′[s(s(t)/x)], and

by the Substitution Theorem (Theorem 54), also A′ 6|= ψ′[t/x][s]. By the inductive hypothesis,

ψ′[t/x] /∈ Γ ∗, whence ∀xψ′ /∈ Γ ∗. But by deductive closure and `ψ≡ψ′, we have ∀xψ /∈ Γ ∗.
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• If ∀xψ /∈ Γ ∗, then by maximality ∼∀xψ ∈ Γ ∗ (i.e., ∃x∼ψ ∈ Γ ), and by saturation for some

c, also ∼ψ[c/x] ∈ Γ ∗, so that by consistency ψ[c/x] /∈ Γ ∗. (The constant c is the “existential

witness” referred to in the Introduction.) By the inductive hypothesis, A′ 6|= ψ[c/x][s], so that

A′ 6|=ψ[s(s(c)/x)] by the Substitution Theorem. The conclusion A′ 6|= ∀xψ[s] follows.

3, 6,

Finally, let A be the structure for L obtained from A′ by dropping the interpretations of the new

constants cn. Using induction on formulas ϕ ofL one can show that A′ |= ϕ[s] if and only if A |= ϕ[s],
so that s satisfies Γ in A.

81. Definition: A set Γ of formulas is finitely satisfiable if and only if every finite Γ0 ⊆ Γ is satisfiable.

82. Corollary: (Compactness Theorem)

(i) if Γ |= ϕ then there is a finite Γ0 ⊆ Γ such that Γ0 |= ϕ;

(ii) Γ is satisfiable if and only if it is finitely satisfiable.

Part IV

Extensions and applications

Rudiments of model theory

83. Definition: A signature s is a set of predicate symbols, function symbols and individual constants.

A structure A for s assigns subsets of An, functions from An to A, and members of A to the predicate

symbols, function symbols and individual constants, respectively, in the signature.

84. Definition: Given signatures s ⊆ t and a structure A for t, the reduct of A to s is the structure B

obtained from A by dropping interpretations for the symbols in t but not in s. Similarly, we say that A

is an expansion of B to t.

85. Definition: Given structures A and B for the same signature, we say that A is a substructure of B,

and B an extension of A, written A ⊆B, if A⊆ B and moreover:

É For each constant c in the signature, cA = cB;

É For each predicate symbol P and a1, . . . , an in A, PA(a1, . . . , an) holds if and only if PB(a1, . . . , an)

holds.

É For each function symbol f in the signature and a1, . . . an in A, f A(a1, . . . an) = f B(a1, . . . , an).

86. Remark: If the signature contains no constant or function symbols, then each A⊆ B determines a

substructure A of B with universe A by putting PA = PB ∩ An.

87. Definition: If a structure A satisfies a set Γ of sentences, then we say that A is a model of Γ .

88 . Proposition: (Downward Löwenheim-Skolem Theorem) If Γ is consistent then it has a countable

model, i.e., it is satisfiable in a structure whose domain is either finite or denumerably infinite.
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Proof. If Γ is consistent, the structure A delivered by the proof of Theorem 80 has a universe A whose

cardinality is bounded by that of the set of the terms of the language L ′. So A is at most denumerably

infinite.

89. Remark: (Skolem’s paradox) By the Löwenheim-Skolem theorem, Zermelo-Fränkel set theory, Z F ,

is satisfiable in a countable structure, and yet Z F ` ∃x(x is uncountable).

90. Theorem: If a set Γ of sentences has arbitrarily large finite models, then it has an infinite model.

Proof. Expand the language of Γ by adjoining countably many new constants c0, c1, . . . and consider the

set Γ ∪ {∼ ci
.
= c j : i 6= j}. To say that Γ has arbitrarily large finite models means that for every m > 0

there is an n ≥ m such that Γ has a model of cardinality n. This implies that Γ ∪ {∼ ci
.
= c j : i 6= j} is

finitely satisfiable. By compactness, Γ ∪{∼ ci
.
= c j : i 6= j} has a model A whose domain must be infinite,

since it satisfies all inequalities ∼ ci
.
= c j .

91. Proposition: There is no sentence ϕ of any first-order language L that is true in a structure A if

and only if the domain A of the structure is infinite.

Proof. If there were such a ϕ, its negation ∼ϕ would be true in all and only the finite structures, and it

would therefore have arbitrarily large finite models but it would lack an infinite model, against Theorem

90.

92. Definition: Given two structures A and B for the same languageL (s), we say that A is elementarily

equivalent to B, written A≡B, if and only if for every sentence ϕ of L (s), A |= ϕ if and only if B |= ϕ.

93. Definition: Given two structures A and B for the same language L , we say that A is isomorphic

to B, written A'B, if and only if there is a function h : A→ B such that:

1. h is one-one: if h(a1) = h(a2) then a1 = a2;

2. h is onto B: for every b ∈ B there is a ∈ A such that h(a) = b;

3. for every constant c: h(cA) = cB;

4. for every n-place predicate symbol P: 〈a1, . . . , an〉 ∈ PA if and only if 〈h(a1), . . . ,h(an)〉 ∈ PB;

5. for every n-place function symbol f : h( f A(a1, . . . , an)) = f B(h(a1), . . . ,h(an)).

94. Theorem: If A'B then A≡B.

Proof. Let h be an isomorphism of A onto B; for any assignment s in A, let h ◦ s be the composition of

h and s, i.e., the assignment in B such that (h ◦ s)(x) = h(s(x)). We proceed by induction on t and ϕ

and prove the stronger claims:

h(s(t)) = h ◦ s(t);

A |= ϕ[s] if and only if B |= ϕ[h ◦ s].
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Make sure to take note at each step of how each of the five properties characterizing isomorphisms is

used.

95. Definition: Given a structure A, the theory of A is the set Th(A) of sentences that are true in A,

i.e.: Th(A) = {ϕ : A |= ϕ}.

We also use the term “theory” informally to refer to sets of sentences having an intended interpretation,

whether deductively closed or not.

96. Proposition: For any A, Th(A) is maximally consistent. Hence, if B |= ψ for every ψ ∈ Th(A),
then A≡B.

Proof. Th(A) is consistent because satisfiable (by definition). It is maximal since for any sentence ϕ

either ϕ is true in A or its negation is. It immediately follows that Th(A) ⊆ Th(B) and Th(B) ⊆ Th(A),
whence A≡B.

97. Remark: Consider R= (R,<), the structure whose domain is the set R of the real numbers, in the

language comprising only a 2-place predicate interpreted as the < relation over the reals. Clearly R is

uncountable; however, since Th(R) is obviously consistent, by the Löwenheim-Skolem theorem it has

a countable model, say S, and by Proposition 96, R≡S. Moreover, since R and S are not isomorphic,

this shows that the converse of Theorem 94 fails in general.

98. Definition: Given two structures A and B, a partial isomorphism from A to B is a finite function p

taking arguments in A and returning values in B, satisfying the isomorphism conditions from Definition

93 on its domain:

1. p is one-one;

2. for every constant c: if cA is in the domain of p, then p(cA) = cB;

3. for every n-place predicate symbol P: if a1, . . . , an are in the domain of p, then 〈a1, . . . , an〉 ∈ PA

if and only if 〈p(a1), . . . , p(an)〉 ∈ PB;

4. for every n-place function symbol f : if a1, . . . , an are in the domain of p, then p( f A(a1, . . . , an))

is also in the domain of p, and p( f A(a1, . . . , an)) = f B(p(a1), . . . , p(an)).

Notice that the empty map ∅ is a partial isomorphism between any two structures.

99. Definition: Two structures A and B, are partially isomorphic, written A 'p B, if and only if there

is a non-empty set I of partial isomorphisms between A and B satisfying the back-and-forth property:

1. (Forth) For every p ∈ I and a ∈ A there is q ∈ I such that p ⊆ q and a is in the domain of q;

2. (Back) For every p ∈ I and b ∈ B there is q ∈ I such that p ⊆ q and b is in the range of q.

100. Theorem: If A'p B and A and B are countable, then A'B.

Proof. Since A and B are countable, let A= {a0, a1, . . .} and B = {b0, b1, . . .}. Starting with an arbitrary

p0 ∈ I , we define an increasing sequence of partial isomorphisms p0 ⊆ p1 ⊆ p2 ⊆ · · · as follows:
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É if n+1 is odd, say n= 2r, then using the Forth property find a pn+1 ∈ I such that pn ⊆ pn+1 and

ar is in the domain of pn+1;

É if n+ 1 is even, say n+ 1= 2r, then using the Back property find a pn+1 ∈ I such that pn ⊆ pn+1

and br is in the range of pn+1.

If we now put:

p=
⋃

n≥0

pn,

We have that p is a an isomorphism of A onto B.

101. Theorem: If A and B are structures in a purely relational signature (a signature containing only

predicate symbols, and no function symbols or constants), then A'p B, implies A≡B.

Proof. By induction on formulas, one shows that if a1, . . . , an and b1, . . . , bn are such that there is a

partial isomorphism p mapping each ai to bi and s1(x i) = ai and s2(x i) = bi (for i = 1, . . . , n), then

A |= ϕ[s1] if and only if B |= ϕ[s2]. The case for n= 0 gives A≡B.

If function symbols are present, the previous result is still true, but one needs to consider the iso-

morphism induced by p between the substructure of A generated by a1, . . . , an and the substructure of

B generated by b1, . . . , bn. But we will not need this more general case in what follows.

The previous result can be “broken down” in stages by establishing a connection between the num-

ber of nested quantifiers in a formula and how many times the relevant partial isomorphisms can be

extended.

102 . Definition: For any formula ϕ, the quantifier rank of ϕ, denoted by qr(ϕ) ∈ N, is recursively

defined as the highest number of nested quantifiers in ϕ. Two structures A and B are n-equivalent,

written A≡n B, if they agree on all sentences of quantifier rank less than or equal to n.

103. Proposition: Let s be a finite purely relational signature, i.e., a signature containing finitely many

predicate and constant symbols, and no function symbols. Then for each n ∈ N there are only finitely

many first-order sentences in the signature s that have quantifier rank no greater than n, up to logical

equivalence.

Proof. By induction on n.

104. Definition: Given a structure A, let A<ω be the set of all finite sequences over A. We use variables

a,b,c, . . . to range over finite sequences of elements. If a ∈ A<ω and a ∈ A, then aa represents the

concatenation of a with a.

105. Definition: Given structures A and B, we define relations In ⊆ A<ω× B<ω between sequences of

equal length, by recursion on n as follows:

É I0(a,b) if and only if a and b satisfy the same atomic formulas in A and B; i.e., if s1(x i) = ai

and s2(x i) = bi and ϕ is atomic with all variables among x1, . . . , xn, then A |= ϕ[s1] if and only if

B |= ϕ[s2].
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É In+1(a,b) if and only if for every a ∈ A there is a b ∈ B such that In(aa,bb), and vice-versa.

106. Definition: Write A≈n B if In(∅,∅) holds of A and B (where ∅ is the empty sequence).

107. Theorem: Let s be a purely relational signature. Then In(a,b) implies that for every ϕ such that

qr(ϕ) ≤ n, we have A |= ϕ[a] if and only if B |= ϕ[b] (where again a satisfies ϕ if any s such that

s(x i) = ai satisfies ϕ). Moreover, if s is finite, the converse also holds.

Proof. The proof that In(a,b) implies that a and b satisfy the same formulas of quantifier rank no greater

than n is by an easy induction on ϕ. For the converse we proceed by induction on n, using Proposition

103, which ensures that for each n there are at most finitely many non-equivalent formulas of that

quantifier rank.

For n= 0 the hypothesis that a and b satisfy the same quantifier-free formulas gives that they satisfy

the same atomics, so that I0(a,b).

For the n+1 case, suppose that a and b satisfy the same formulas of quantifier rank no greater than

n+ 1; in order to show that In+1(a,b), it suffices to show that for each a ∈ A there is a b ∈ B such that

In(aa,bb), and by the inductive hypothesis again it suffices to show that for each a ∈ A there is a b ∈ B

such that aa and bb satisfy the same formulas of quantifier rank no greater than n.

Given a ∈ A, let τa
n be set of formulas ψ(x ,y) of rank no greater than n satisfied by aa in A; τa

n is

finite, so we can assume it is a single first-order formula. It follows that a satisfies ∃xτa
n(x ,y), which

has quantifier rank no greater than n+1. By hypothesis b satisfies the same formula in B, so that there

is a b ∈ B such that bb satisfies τa
n; in particular, bb satisfies the same formulas of quantifier rank no

greater than n as aa. Similarly one shows that for every b ∈ B there is a ∈ A such that aa and bb satisfy

the same formulas of quantifier rank no greater than n, which completes the proof.

108. Corollary: If A and B are purely relational structures in a finite signature then A ≈n B if and

only if A≡n B. In particular A≡B if and only if for each n, A≈n B .

109 . Definition: A dense linear ordering without endpoints is a structure A = (A,<A) satisfying the

following sentences:

1. ∀x∼ x < x;

2. ∀x∀y∀z(x < y ⊃ (y < z ⊃ x < z));

3. ∀x∀y(x < y ∨ x
.
= y ∨ y < x);

4. ∀x∃y(x < y);

5. ∀x∃y(y < x);

6. ∀x∀y(x < y ⊃ ∃z(x < z ∧ z < y)).

110. Theorem: (Cantor) Any two countable dense linear orderings without endpoints are isomorphic.

Proof. Let A= (A,<A) and B= (B,<B) be countable dense linear orderings without endpoints, and let

I be the set of all partial isomorphisms between them. I is not empty since at least ∅ ∈ I . It suffices

to show that I satisfies the Back-and-Forth property.
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Let p ∈ I and let p(ai) = bi for i = 1, . . . , n, and without loss of generality suppose a1 <
A a2 <

A

· · ·<A an . Given a ∈ A, find b ∈ B as follows:

É if a <A a1 let b ∈ B be such that b <B b1;

É if an <
A a let b ∈ B be such that bn <

B b;

É if ai <
A a <A ai+1 for some i, then let b ∈ B be such that bi <

B b <B bi+1.

It is always possible to find a b with the desired property since B is a dense linear ordering without

endpoints. Define q = p∪{〈a, b〉}, so that q ∈ I is the desired extension of p. This establishes the Forth

property. The Back property is similar. So A'p B and by Theorem 100 also A'B.

111. Remark: Let S = (S,<S) be any countable dense linear ordering without endpoints. Then (by

Theorem 110) S ' Q, where Q = (Q,<) is the countable dense linear ordering having the set Q of

the rational numbers as its domain. Now consider again the structure R= (R,<) from Remark 97. We

saw that there is a countable structure S such that R ≡S. But S is a countable dense linear ordering

without endpoints, and so it is isomorphic (and hence equivalent) to the structure Q. By transitivity

of elementary equivalence, R ≡ Q. (We could have shown this directly by establishing R 'p Q by the

same back-and-forth argument.)

Non-standard models of arithmetic

112. Definition: Let LN be the language of arithmetic, comprising a constant 0, a 2-place predicate

symbol <, a 1-place function symbol s, and 2-place function symbols + and ×.

É The standard model of arithmetic is the structure N for LN having N = {0,1, 2, . . .} and inter-

preting 0 as 0, < as the less-than relation over N, and s, + and × as successor, addition, and

multiplication over N, respectively.

É True arithmetic is the theory Th(N).

When working in Ln we abbreviate each term of the form s · · · s0, with n applications of the successor

function to 0, as n.

113. Definition: A structure M for LN is standard if and only N'M.

114. Theorem: There are non-standard countable models of true arithmetic.

Proof. Expand LN by introducing a new constant, c, and consider the theory

Th(N)∪ {n< c : n ∈ N}.

The theory is finitely satisfiable, so by compactness it has a model M, which can be taken to be countable

by the Downward Löwenheim-Skolem theorem. Where M is the domain of M, let M interpret the non-

logical constants of L as z ∈ M , ≺ ⊆ M2, ∗ : M → M , and �,� : M2 → M . For each x ∈ M , we write

x∗ for the element of M obtained from x by application of ∗.
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Now, if h were an isomorphism of N and M, there would be n ∈ N such that h(n) = cM. So

let s be any assignment in N such that s(x) = n (we use s both for the successor symbol in LN and

the assignment: no confusion should arise). Then N |= n
.
= x[s]; by the proof of Theorem 94, also

M |= n
.
= x[h◦s], so that cM = z∗···∗ (with ∗ iterated n times). But this is impossible since by assumption

M |= n< c and ≺ is irreflexive. So M is non-standard.

Since the non-standard model M from Theorem 114 is elementarily equivalent to the standard one,

a number of properties of M can be derived. The rest of this section is devoted to such a task, which

will allow us to obtain a precise characterization of countable non-standard models of Th(N).

1. No member of M is ≺-less than itself: the sentence ∀x∼ x < x is true in N and therefore in M.

2. By a similar reasoning we obtain that≺ is a linear ordering of M , i.e., a total, irreflexive, transitive

relation on M .

3. The element z is the ≺-least element of M .

4. Any member of M is ≺-less than its ∗-successor and x∗ is the ≺-least member of M greater than

x .

5. M contains an initial segment (of ≺) isomorphic to N: z,z∗,z∗∗, . . ., which we call the standard

part of M . Any other member of M is non-standard. There must be non-standard members of

M , or else the function h from the proof of Theorem 114 is an isomorphism. We use n, m, . . . as

variables ranging on this standard part of M.

6. Every non-standard element is greater than any standard one; this is because for every n ∈ N,

N |= ∀z(∼(z .
= 0∨ . . .∨ z

.
= n) ⊃ n< z),

so if z ∈ M is different from al the standard elements, it must be greater than all of them.

7. Any member of M other than z is the ∗-successor of some unique element of M , denoted by ∗x .

If x = y∗ then both x and y are standard if one of them is (and both non-standard if one of them

is).

8. Define an equivalence relation ≈ over M by saying that x ≈ y if and only if for some standard n,

either x � n = y or y � n = x . In other words, x ≈ y if and only if x and y are a finite distance

apart. If n and m are standard then n ≈ m. Define the block of x to be the equivalence class

[x] = {y : x ≈ y}.
9. Suppose that x ≺ y where x 6≈ y; then either x∗ ≺ y or x∗ = y; the latter is impossible because

it implies x ≈ y , so x ≺ y . Similarly, if x ≺ y and x 6≈ y , then x ≺ ∗ y . Therefore if x ≺ y and

x 6≈ y , then every w ≈ x is ≺-less than every v ≈ y . Accordingly, each block [x] forms a doubly

infinite chain

· · · ≺ ∗∗x ≺ ∗x ≺ x ≺ x∗ ≺ x∗∗ ≺ · · ·

which is referred to as a Z-chain because it has the order type of the integers.

10. The ≺ ordering can be lifted up the blocks: if x ≺ y then the block of x is less than the block of
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y . A block is non-standard if it contains a non-standard element. The standard block is the least

block.

11. There is no least non-standard block: if y is non-standard then there is a x ≺ y where x is also

non-standard and x 6≈ y . Proof: in the standard model N, every number is divisible by two,

possibly with remainder one. By elementary equivalence, for every y ∈ M there is x ∈ M such

that either x � x = y or x � x � z∗ = y . If x were standard, then so would be y; so x is non-

standard. And x 6≈ y for if x �n= y for some standard n then (say) x �n= x � x , whence x = n

by the cancellation law for addition (which holds in N and therefore in M as well), and x would

be standard after all. (Similarly if x � x � z∗ = y .)

12. By a similar argument, there is no greatest block.

13. The ordering of the blocks is dense: if [x] is less than [y] (where x 6≈ y), then there is a block

[z] distinct from both that is between them. Suppose x ≺ y . As before, x � y is divisible by two

(possibly with remainder) so there is a u ∈ M such that either x � y = u�u or x � y = u�u�z∗.

The element u is the average of x and y , and so is between them. Assume x � y = u � u (the

other case being similar): if u≈ x then for some standard n:

x � y = x � n � x � n,

so y = x � n � n and we would have x ≈ y , against assumption. We conclude that u 6≈ x . A

similar argument gives u 6≈ y .

The non-standard blocks are therefore ordered like the rationals: they form a countable linear ordering

without endpoints. It follows that for any two countable non-standard models of true arithmetic, M1

and M2, their reducts to the language containing< and= only are isomorphic. Indeed, an isomorphism

h can be defined as follows: the standard parts of M1 and M2 are isomorphic to the standard model N

and hence to each other. The blocks making up the non-standard part are themselves ordered like the

rationals and therefore by Theorem 110 are isomorphic; an isomorphism of the blocks can be extended

to an isomorphism within the blocks by matching up arbitrary elements in each, and then taking the

image of the successor of x in M1 to be the successor of the image of x in M2. Note that it does not

follow that M1 and M2 are isomorphic in the full language of arithmetic (isomorphism is always relative

to a signature), as indeed there are non-isomorphic ways to define addition and multiplication over M1

and M2. This also follows from a famous theorem of Vaught’s that the number of countable models of

a complete theory cannot be 2.)

The interpolation theorem

Our aim in this section is to prove the following:

115. Theorem: (Craig’s Interpolation) If |= ϕ ⊃ ψ, then there is a sentence θ such that |= ϕ ⊃ θ and

|= θ ⊃ ψ, and every constant, function, or predicate symbol (other than
.
=) in θ occurs both in ϕ and

ψ. The sentence θ is called an interpolant for ϕ and ψ.
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A bit of groundwork is needed before we can proceed with the proof.

116. Definition: A sentence θ separates sets of sentences Γ and ∆ if and only if Γ |= θ and ∆ |= ∼θ .

If no such sentence exists, then Γ and ∆ are inseparable. The inclusion relations between the classes of

models of Γ , ∆ and θ are represented below:

Γ ∆

θ

∼θ

Figure: θ separates Γ and ∆

117. Lemma: Suppose L0 is the language containing every constant, function and predicate symbol

(other than
.
=) that occurs in both Γ and ∆, and let L ′0 be obtained by the addition of infinitely many

new constants cn for n≥ 0. Then if Γ and∆ are inseparable inL0 then they are also inseparable inL ′0.

Proof. Suppose for contradiction that Γ and∆ are separated inL ′0, so that Γ |= θ[c/x] and∆ |=∼θ[c/x]

for some θ ∈ L0 (where c is a new constant — the case where θ contains more than one such new

constant is similar). By compactness, there are finite subsets Γ0 of Γ and ∆0 of ∆ such that Γ0 |= θ[c/x]

and ∆0 |=∼θ[c/x]. Let γ be the conjunction of all formulas in Γ0 and δ the conjunction of all formulas

in ∆0. Then

γ |= θ[c/x], δ |=∼θ[c/x].

From the former, by Generalization, we have γ |= ∀xθ , and from the latter by Contraposition, θ[c/x] |=
∼δ, whence also ∀xθ |=∼δ. Contraposition again gives δ |=∼∀xθ . By Monotony,

Γ |= ∀xθ , ∆ |=∼∀xθ ,

so that ∀xθ separates Γ and ∆ in L0.

118. Lemma: Suppose that Γ ∪ {∃xσ} and ∆ are inseparable, and c is a new constant not in Γ , ∆, or

σ. Then Γ ∪ {∃xσ,σ[c/x]} and ∆ are also inseparable.

Proof. Suppose for contradiction that θ separates Γ ∪ {∃xσ,σ[c/x]} and ∆, while at the same time

Γ ∪ {∃xσ} and ∆ are inseparable. We distinguish two cases:

(i) c does not occur in θ : in this case Γ ∪ {∃xσ,∼θ} is satisfiable (otherwise θ separates Γ ∪ {∃xσ}
and∆), and it remains so upon adjunction of σ[c/x], so θ does not separate Γ ∪{∃xσ,σ[c/x]} and

∆ after all.
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(ii) c does occur in θ so that θ has the form θ[c/x]. Then we have that

Γ ∪ {∃xσ,σ[c/x]} |= θ[c/x],

whence Γ ,∃xσ |= ∀x(σ ⊃ θ ) by the Deduction Theorem and Generalization, and finally Γ ∪
{∃xσ} |= ∃xθ . On the other hand, ∆ |= ∼θ[c/x] and hence by Generalization ∆ |= ∼∃xθ . So

Γ ∪ {∃xσ} and ∆ are separable, a contradiction.

Proof of Theorem 115. LetL1 be the language ofϕ andL2 be the language ofψ; putL0 =L1∩L2. For

each i ∈ {0, 1,2}, let L ′i be obtained from Li by adding the infinitely many new constants c0, c1, c2, . . .;

we immediately have the following.

Assume also that both ϕ and ∼ψ are satisfiable, otherwise ∃x∼(x .
= x) is an interpolant in the first

case, and ∃x(x
.
= x) is an interpolant in the second case.

In order to prove the contrapositive of Craig’s Interpolation, assume that there is no interpolant for

ϕ and ψ. Thus, {ϕ} and {∼ψ} are inseparable in L0.

Next, our goal is to extend the pair ({ϕ}, {∼ψ}) to a maximally inseparable pair (Γ ∗,∆∗). Let

ϕ0,ϕ1,ϕ2, . . . enumerate the sentences of L1, and ψ0,ψ1,ψ2, . . . enumerate the sentences of L2. We

define two increasing sequences of sets of sets of sentences (Γn,∆n), for n≥ 0, as follows. Put Γ0 = {ϕ}
and ∆0 = {∼ψ}. Assuming (Γn,∆n) already defined, define Γn+1 and ∆n+1 as follows:

É If Γn∪{ϕn} and∆n are inseparable inL ′0, put ϕn in Γn+1; moreover, if ϕn is an existential formula

∃xσ then pick a new constant c not occurring in Γn, ∆n, ϕn or ψn, and put σ[c/x] in Γn+1.

É If Γn+1 and ∆n ∪ {ψn} are inseparable in L ′0, put ψn in ∆n+1; moreover, if ψn is an existential

formula ∃xσ, then pick a new constant c not occurring in Γn+1, ∆n, ϕn or ψn, and put σ[c/x] in

∆n+1.

Finally, define:

Γ ∗ =
⋃

n≥0

Γn, ∆∗ =
⋃

n≥0

∆n.

By simultaneous induction on n we prove:

(a) Γn and ∆n are inseparable in L ′0;

(b) Γn+1 and ∆n are inseparable in L ′0.

The basis for (a) is given by Lemma 117. For part (b), we need to distinguish three cases:

1. If Γ0 ∪ {ϕ0} and ∆0 are separable, then Γ1 = Γ0 and (b) is just (a);

2. If Γ1 = Γ0 ∪ {ϕ0}, then Γ1 and ∆0 are inseparable by construction.

3. It remains to consider the case where ϕ0 is existential, so that Γ1 = Γ0 ∪ {∃xσ,σ[c/x]}. By con-

struction, Γ0 ∪ {∃xσ} and ∆0 are inseparable, so that by Lemma 118 also Γ0 ∪ {∃xσ,σ[c/x]} and

∆0 are inseparable.

This completes the basis of the induction for (a) and (b) above. Now for the inductive step. For (a), if
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∆n+1 = ∆n ∪ {ψn} then Γn+1 and ∆n+1 are inseparable by construction (even when ψn is existential,

by Lemma 118); if ∆n+1 =∆n (because Γn+1 and ∆n ∪ {ψn} are separable), then we use the inductive

hypothesis on (b). For the inductive step for (b), if Γn+2 = Γn+1 ∪ {ϕn+1} then Γn+2 and ∆n+1 are

inseparable by construction (even when ϕn+1 is existential, by Lemma 118); and if Γn+2 = Γn+1 then we

use the inductives case for (a) just proved. This concludes the induction on (a) and (b).

It follows that Γ ∗ and∆∗ are inseparable; if not, by compactness, there is n≥ 0 that separates Γn and

∆n, against (a). In particular, Γ ∗ and ∆∗ are consistent: for if the former or the latter is inconsistent,

then they are separated by ∃x∼(x .
= x) or ∀x(x

.
= x), respectively.

We now show that Γ ∗ is maximally consistent in L ′1 and likewise ∆∗ in L ′2. For the former, suppose

that ϕn /∈ Γ ∗ and ∼ϕn /∈ Γ ∗, for some n ≥ 0. If ϕn /∈ Γ ∗ then Γn ∪ {ϕn} is separable from ∆n, and so

there is θ ∈ L ′0 such that both:

Γ ∗ |= ϕn ⊃ θ , ∆∗ |=∼θ .

Likewise, if ∼ϕn /∈ Γ ∗, there is θ ′ ∈ L ′0 such that both:

Γ ∗ |=∼ϕn ⊃ θ ′, ∆∗ |=∼θ ′.

By propositional logic, Γ ∗ |= θ ∨ θ ′ and ∆∗ |= ∼(θ ∨ θ ′), so θ ∨ θ ′ separates Γ ∗and ∆∗. A similar

argument establishes that ∆∗ is maximal.

Finally, we show that Γ ∗ ∩∆∗ is maximally consistent in L ′0. It is obviously consistent, since it is

the intersection of consistent sets. To show maximality, let σ ∈ L ′0. Now, Γ ∗ is maximal in L ′1 ⊇ L
′
0,

and similarly ∆∗ is maximal in L ′2 ⊇ L
′
0. It follows that either σ ∈ Γ ∗ or ∼σ ∈ Γ ∗, and either σ ∈ ∆∗

or ∼σ ∈ ∆∗. If σ ∈ Γ ∗ and ∼σ ∈ ∆∗ then σ would separate Γ ∗ and ∆∗; and if ∼σ ∈ Γ ∗ and σ ∈ ∆∗

then Γ ∗ and ∆∗ would be separated by ∼σ. Hence, either σ ∈ Γ ∗ ∩∆∗ or ∼σ ∈ Γ ∗ ∩∆∗, and Γ ∗ ∩∆∗ is

maximal.

Since Γ ∗ is maximally consistent, there is a model M′
1 whose universe M1 comprises all and only

the elements cM
′
1 interpreting the constants — just like in the proof of Theorem 80. Similarly ∆∗ has a

model M′
2 whose universe M2 is given by the interpretations cM

′
2 of the constants.

Let M1 be obtained from M′
1 by dropping interpretations for constants, functions, and predicate

symbols in L ′1 \ L
′
0, and similarly for M2. Then the map h : M1 → M2 defined by h(cM

′
1) = cM

′
2 is an

isomorphism inL ′0, because Γ ∗∩∆∗ is maximally consistent inL ′0, as shown. This follows because any

L ′0-sentence either belongs to both Γ ∗ and ∆∗, or to neither: so cM
′
1 ∈ PM′1 if and only if Pc ∈ Γ ∗ if

and only if Pc ∈ ∆∗ if and only if cM
′
2 ∈ PM′2 . The other conditions satisfied by isomorphisms can be

established similarly.

Let us now define a model M for the language L1 ∪L2 as follows:

É The universe M is just M2 i.e., the set of all elements cM
′
2;

É If a predicate P is in L2 \L1 then PM = PM′2;
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É If a predicate P is inL1\L2 then PM = h(PM′2), i.e., 〈cM
′
2

1 , . . . , c
M′2
n 〉 ∈ PM if and only if 〈cM

′
1

1 , . . . , c
M′1
n 〉 ∈

PM′1 .

É If a predicate P is in L0 then PM = PM′2 = h(PM′1).

É Function symbols of L1 ∪L2, including constants, are handled similarly.

Finally, one shows by induction on formulas that M agrees with M′
1 on all formulas of L ′1 and with

M′
2 on all formulas of L ′2. In particular, M |= Γ ∗ ∪∆∗, whence M |= ϕ and M |= ∼ψ, and 6|= ϕ ⊃ ψ.

This concludes the proof of Craig’s Interpolation Theorem.

We conclude this section with a simple consequence of the Interpolation Theorem concerning de-

finability.

119. Definition: Given a language L and predicates P and P ′ not in L , a set Σ(P) of sentences of

L ∪ {P} implicitly defines P if and only if

Σ(P)∪Σ(P ′) |= ∀x1 . . .∀xn(P x1 . . . xn↔ P ′x1 . . . xn),

where Σ(P ′) is the result of uniformly replacing P ′ for P in Σ(P).

In other words, for any model A and R, R′ ⊆ An, if both (A, R) |= Σ(P) and (A, R′) |= Σ(P ′), then

R= R′; where (A, R) is the expansion of L to L ∪ {P} such that PA = R, and similarly for (A, R′).

120. Definition: Given a language L and a predicate P not in L , a set Σ(P) of sentences of L ∪ {P}
explicitly defines P if and only if there is a formula θ (x1, . . . , xn) of L such that

Σ(P) |= ∀x1 . . . xn(P x1 . . . xn↔ θ (x1, . . . , xn)).

121. Theorem: (Beth Definability Theorem) A set Σ(P) of L ∪{P}-formulas implicitly defines P if and

only Σ(P) explicitly defines P.

Proof. If Σ(P) explicitly defines P then both

Σ(P) |= ∀x1 . . . xn(P x1 . . . xn↔ θ (x1, . . . , xn))

Σ(P ′) |= ∀x1 . . . xn(P
′x1 . . . xn↔ θ (x1, . . . , xn))

and the conclusion follows. For the converse: assume that Σ(P) implicitly defines P, and add countably

many new constants to L . Then

Σ(P)∪Σ(P ′) |= Pc1 . . . cn→ P ′c1 . . . cn.

By compactness, there are finite sets ∆0 ⊆ Σ(P) and ∆1 ⊆ Σ(P ′) such that

∆0 ∪∆1 |= Pc1 . . . cn→ P ′c1 . . . cn.
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Let δ(P) be the conjunction of all sentences ϕ(P) such that either ϕ(P) ∈ ∆0 or ϕ(P ′) ∈ ∆1 and let

δ(P ′) be the conjunction of all sentences ϕ(P ′) such that either ϕ(P) ∈ ∆0 or ϕ(P ′) ∈ ∆1. Then

δ(P)∧δ(P ′) |= Pc1 . . . cn→ P ′c1 . . . cn. Re-arranging such that each predicate occurs on one side of |=:

δ(P)∧ Pc1 . . . cn |= δ(P ′)→ P ′c1 . . . cn.

By Craig’s Interpolation there is a sentence θ (c1, . . . , cn) not containing P or P ′ such that:

δ(P)∧ Pc1 . . . cn |= θ (c1, . . . , cn); θ (c1, . . . , cn) |= δ(P ′)→ P ′c1 . . . cn.

From the former of these two entailments we have: δ(P) |= Pc1 . . . cn → θ (c1, . . . , cn). And from the

latter, since an L ∪{P}-model (A, R) |= ϕ(P) if and only if the corresponding L ∪{P ′}-model (A, R) |=
ϕ(P ′), we have θ (c1, . . . , cn) |= δ(P)→ Pc1 . . . cn, from which:

δ(P) |= θ (c1, . . . , cn)→ Pc1 . . . cn.

Putting the two together, δ(P) |= Pc1 . . . cn↔ θ (c1, . . . , cn), and by monotony and generalization also

Σ(P) |= ∀x1, . . .∀xn(P x1 . . . xn↔ θ (x1, . . . , xn)).

Lindström’s Theorem

In this section we aim to prove Lindström’s characterization of first-order logic as the maximal logic

for which (given certain further constraints) the Compactness and the Downward Löwenheim-Skolem

theorems hold (corollary 82 and proposition 88). First, we need a more general characterization of the

general class of logics to which the theorem applies. For the purposes of this section, we restrict our-

selves to relational languages, i.e., languages whose signatures contain predicate symbols and individual

constants, but no function symbols.

122. Definition: An abstract logic is a pair (L, |=L), where L is a function that assigns to each signature

s a set L(s) of sentences, and |=L is a relation between structures for the signature s and members of

L(s).

Notice that we are still employing the same notion of structure for a given signature as for first-order

logic, but we do not presuppose that sentences are build up from the basic symbols in s in the usual

way, nor that the relation |=L is recursively defined in the same way as for first-order logic. So for

instance the definition is intended to capture the case where sentences in (L, |=L) contain infinitely long

conjunctions or disjunction, or quantifiers other than ∃ and ∀ (e.g., “there are infinitely many x such

that . . . ”), or perhaps infinitely long quantifier prefixes. To emphasize that “sentences” in L(s) need not

be ordinary sentences of first-order logic, we use variables α,β , . . . to range over them.

123 . Definition: Let ModL(α) denote the class {M : M |=L α}. If the signature needs to be made
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explicit, we writeModsL(α). Two structures M and N for s are elementarily equivalent in (L, |=L), written

M≡L N, if the same sentences from L(s) are true in each.

124 . Definition: An abstract logic (L, |=L) for the signature s is normal if it satisfies the following

properties:

1. (L-Monotony) For signatures s and t, if s ⊆ t, then L(s) ⊆ L(t).

2. (Expansion Property) For each α ∈ L(s) there is a finite subset s′ of s such that the relation M |=L α

depends only on the reduct of M to s′; i.e., if M and N have the same reduct to s′ then M |=L α

if and only if N |=L α.

3. (Isomorphism Property) If M |=L α and M'N then also N |=L α.

4. (Renaming Property) The relation |=L is preserved under renaming: if the signature s′ is obtained

from s by replacing each symbol P by a symbol P ′ of the same arity and each constant c by a

distinct constant c′, then for each structure M and sentence α, M |=L α if and only if M′ |=L α
′,

where M′ is the s′-structure corresponding to s and α′ ∈ L(s′).

5. (Boolean Property) The abstract logic (L, |=L) is closed under the Boolean connectives in the sense

that for each α ∈ L(s) there is an β ∈ L(s) such that M |=L β if and only if M 6|=L α, and for each

α and β there is a γ such that ModL(γ) = ModL(α) ∩ModL(β). Similarly for atomic formulas

and the other connectives.

6. (Quantifier Property) For each constant c in s and α ∈ L(s) there is a β ∈ L(s) such that

Mods
′

L (β) = {M : (M, a) ∈ModsL(α) for some a ∈ M},

where s′ = s− {c} and (M, a) is the expansion of M to s assigning a to c.

7. (Relativization Property) Given a sentence α ∈ L(s) and symbols R, c1, . . . , cn not in s, there is a

sentence β ∈ L(s ∪ {R, c1, . . . , cn}) called the relativization of α to Rxc1 . . . cn, such that for each

structure M:

(M, X , b1, . . . , bn) |=L β) if and only if N |=L α,

where N is the substructure of M with universe N = {a ∈ M : RM(a, b1, . . . , bn)} (see Remark 86),

and (M, X , b1, . . . , bn) is the expansion of M interpreting R, c1, . . . , cn by X , b1, . . . , bn, respectively

(with X ⊆ M n+1).

125. Definition: Given two abstract logics (L1, |=L1
) and (L2, |=L2

) we say that the latter is at least as

expressive as the former, written (L1, |=L1
) ≤ (L2, |=L2

), if for each signature s and sentence α ∈ L1(s)

there is a sentence β ∈ L2(s) such that ModsL1
(α) =ModsL2

(β). The logics (L1, |=L1
) and (L2, |=L2

) are

equivalent if (L1, |=L1
)≤ (L2, |=L2

) and (L2, |=L2
)≤ (L1, |=L1

).

126. Remark: First-order logic, i.e., the abstract logic (F, |=), is normal. In fact, the above properties

are mostly straightforward for first-order logic. We just remark that the expansion property comes down

to local determination, and that the relativization of a sentence ϕ to Rxc1 . . . cn is obtained by replacing

each subformula ∀xψ by ∀x(Rxc1 . . . cn → ψ). Moreover, if (L, |=L) is normal, then (F, |=) ≤ (L, |=L),
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as it can be can shown by induction on formulas. Accordingly, with no loss in generality, we can assume

that every first-order sentence belongs to every normal logic.

We now give the obvious extensions of compactness and Löwenheim-Skolem to the case of abstract

logics.

127. Definition: Let (L, |=L) be an abstract logic; then:

É (L, |=L) has the Compactness Property if each set Γ of L(s)-sentences is satisfiable whenever each

finite Γ0 ⊆ Γ is satisfiable.

É (L, |=L) has the Downward Löwenheim-Skolem property if any satisfiable Γ has a model of cardi-

nality at most countably infinite.

The notion of partial isomorphism from Definition 99 is purely “algebraic” (i.e., given without refer-

ence to the sentences of the language but only to the signature s of the structures), and hence it applies

to the case of abstract logics. In case of first-order logic, we know from Theorem 101 that if two struc-

tures are partially isomorphic then they are elementarily equivalent. That proof does not carry over to

abstract logics, for induction on formulas need not be available for arbitrary α ∈ L(s), but the theorem

is true nonetheless, provided the Löwenheim-Skolem property holds.

128. Theorem: Suppose (L, |=L) is a normal logic with the Löwenheim-Skolem property. Then any

two structures that are partially isomorphic are elementarily equivalent in (L, |=L).

Proof. Suppose M'p N, but for some α also M |=L α while N 6|=L α. By the Isomorphism Property we

can assume that M and N are disjoint, and by the expansion property we can assume that α ∈ L(s) for

a finite signature s. Let I be a set of partial isomorphisms, and with no loss in generality we can also

assume that if p ∈ I and q ⊆ p then also q ∈ I .

Where M<ω is the set of finite sequences over M : let S be the ternary relation over M<ω repre-

senting concatenation, i.e., if a,b,c ∈ M<ω then S(a,b,c) holds if and only if c is the concatenation of

a and b; and let T be the ternary relation such that T (a, b,c) holds for b ∈ M and a,c ∈ M<ω if and

only if a = a1, . . . an and c = a1, . . . an, b. Pick new 3-place predicate symbols P and Q and form the

structure M∗ having the universe M ∪M<ω, having M as a substructure, and interpreting P and Q by

the concatenation relations S and T (so M∗ is in the signature s∪ {P,Q}).
Define N<ω, S′, T ′, P ′, Q′ and N∗ analogously. Since by hypothesis M 'p N, there is a relation I

between M<ω and N<ω such that I(a,b) holds if and only if a and b are isomorphic and satisfying the

back-and-forth condition of Definition 99. Now, let A be the structure whose universe is the union of

the universes of M∗ and N∗, having M∗ and N∗ as substructures, in the signature with one extra binary

symbol R interpreted by the relation I and predicates denoting the universes M∗ and N ∗.

The crucial observation is that in the language of the structure A there is a first-order sentence θ1 true

in A saying that M |=L α and N 6|=L α (this requires the Relativization Property), as well as a first-order

sentence θ2 true in A saying that M 'p N via the partial isomorphism I . By the Löwenheim-Skolem

Property, θ1 and θ2 are jointly true in a countable model A0 containing partially isomorphic substruc-
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M N

M∗ N∗

I

Figure: the structure A with the internal partial isomorphism.

tures M0 and N0 such that M0 |=L α and N0 6|=L α. But countable partially isomorphic structures are

in fact isomorphic by Theorem 100, contradicting the Isomorphism Property of normal logics.

129. Lemma: Suppose α ∈ L(s), with s finite, and assume also that there is n ∈ N such that for any

two structures M and N, if M≡n N and M |=L α then also N |=L α. Then α is equivalent to a first-order

sentence, i.e., there is a first-order θ such that ModL(α) =ModL(θ ).

Proof. Let n be such that any two n-equivalent structures M and N agree on the value assigned to α.

Recall that there are only finitely many first-order sentences in a finite signature that have quantifier rank

no greater than n, up to logical equivalence. Now, for each fixed structure M let θM be the conjunction

of all first-order sentences ϕ true in M with qr(ϕ) ≤ n (this conjunction is finite), so that N |= θM
if and only if N ≡n M. Then put θ =

∨

{θM : M |=L α}; this disjunction is also finite (up to logical

equivalence).

The conclusion ModL(α) = ModL(θ ) follows. In fact, if N |=L θ then for some M |=L α we have

N |= θM, whence also N |=L α (by the hypothesis of the lemma). Conversely, if N |=L α then θN is a

disjunct in θ , and since N |= θN, also N |=L θ .

130. Lindström’s Theorem: Suppose (L, |=L) has the compactness and the Löwenheim-Skolem Prop-

erties. Then (L, |=L)≤ (F, |=) (where the latter is first-order logic).

Proof. By Lemma 129, suffices to show that for any α ∈ L(s), with s finite, there is n ∈ N such that for

any two structures M and N: if M ≡n N then M and N agree on α. For then α is equivalent to a first

order sentence, from which (L, |=L)≤ (F, |=) follows. Since we are working in a finite, purely relational

signature, by Theorem 107 we can replace the statement that M ≡n N by the corresponding algebraic

statement that In(∅,∅).
Given α, suppose towards a contradiction that for each n there are structures Mn and Nn such that

In(∅,∅), but (say) Mn |=L α whereas Mn 6|=L α. By the Isomorphism Property we can assume that all

the Mns interpret the constants of the language by the same objects; furthermore, since there are only

finitely many atomic sentences in the language, we may also assume that they satisfy the same atomic

sentences (we can take a subsequence of the M’s otherwise). Let M be the union of all the Mns, i.e.,
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the unique minimal structure having each Mn as a substructure. As in the proof of 128, let M∗ be the

extension of M with universe M∪M<ω, in the expanded language comprising concatenation predicates

P and Q.

Similarly, define Nn, N and N∗. Now let A be the structure whose universe comprises the universes

of M∗ and N∗ as well as the natural number N along with their natural ordering ≤, in the signature

with extra predicates representing the universes M , N , M<ω and N<ω as well as predicates coding the

domains of Mn and Nn in the sense that:

Mn = {a ∈ M : R(a, n)}; Nn = {a ∈ N : S(a, n)};
M<ω

n = {a ∈ M<ω : R(a, n)}; N<ωn = {a ∈ N<ω : S(a, n)}.

The structure A also has a ternary relation J such that J(n,a,b) holds if and only if In(a,b).

Now there is a sentence θ is the language s augmented by R, S, J , etc. saying that ≤ is a discrete

linear ordering with first but no last element and such that Mn |= α, Nn 6|= α, and for each n in the

ordering J(n,a,b) holds if and only if In(a,b).

Using the Compactness Property, we can find a model A∗ of θ in which the ordering contains a non-

standard element n∗. In particular then A∗ will contain substructures Mn∗ and Nn∗ such that Mn∗ |=L α

and Nn∗ 6|=L α. But now we can define a set I of pairs of k-tuples from Mn∗ and Nn∗ by putting (a,b) ∈ I
if and only if J(n∗−k,a,b), where k is the length of a and b. Since n∗ is non standard, for each standard

k we have that n∗− k > 0, and the set I witnesses the fact that Mn∗ 'p Nn∗ . But by Theorem 128, Mn∗

is L-equivalent to Nn∗ , a contradiction.

Part V

Problems Sets

Problem Set I: syntactic matters

1. Definition: Let X be a set of basic symbols comprising: K , N , p0, p1, p2, . . ., which are assumed to

be all distinct. We refer to arbitrary strings (n-tuples) over X as expressions, and denote concatenation

by juxtaposition. Let WFF, the set of well-formed formulas, be the smallest set of expressions satisfying

the clauses:

1. pn ∈WFF for all n≥ 0;

2. if ϕ,ψ ∈WFF, then both Kϕψ and Nϕ are all in WFF.

The intended interpretation is that the objects pn are atomic sentences, K and N represent conjunction

and negation, respectively, and WFF is the set of all sentences. So the following are in WFF: p13, N p7,

Kp5p123, NKp5p123; but the following are not: Kp5, p123Kp5. Notice that we do not have parentheses;

this way of writing sentences in WFF is referred to as “Polish notation.” As a consequence of the
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definition we have the following:

2. Theorem: (Principle of Induction on WFF) Let B be any subset of WFF satisfying conditions (1.)

and (2.) above (i.e., B contains {pn : n≥ 0} and is closed under K and N); then B =WFF.

3. Definition: Define a function r :X → Z (Z the set of the integers) explicitly by putting r(x) = 1−k,

where k is the number of symbols that have to follow x in order to obtain a WFF. In other words:

r(pn) = 1; r(N) = 0; r(K) = −1.

We then “lift” the function r to a function r defined over arbitrary expressions by putting:

r(x1 . . . xk) = r(x1) + · · ·+ r(xk).

By the properties of addition, if ϕ is the concatenation of expressions ψ1 . . . ,ψm, then r(ϕ) = r(ψ1) +

· · ·+ r(ψm) (you may freely help yourself to this fact in the problems below).

4. Problem: Show that if ϕ ∈WFF then r(ϕ) = 1. Hint: use induction on WFFs.

5. Problem: Prove that any terminal (not necessarily proper) segment of a WFF is a concatenation of

one or more WFFs. (A terminal segment of x1 . . . xn is any k-tuple xk xk+1 . . . xn for 1 ≤ k ≤ n.) Hint:

use induction on WFFs.

6. Problem: Prove that no proper initial segment of a WFF is a WFF.

Hint: suppose ϕ =ψ1ψ2 and consider r(ϕ). Use the previous two problems.

7. Problem: We know from problem 4 that if ϕ ∈WFF, then r(ϕ) = 1. Prove that the converse is not

true by exhibiting an expression ψ for which r(ψ) = 1 but ψ is not in WFF.

8 . Problem: Let ϕ be any expression, not necessarily a WFF, and suppose that for every terminal

segment ψ of ϕ it holds that r(ψ)> 0. Prove that ϕ is a concatenation of r(ϕ)WFFs.

Hint: proceed by complete mathematical induction (not on WFF, but) on the number of symbols in ϕ.

For the inductive step, consider ϕ = x1 . . . xn, with n> 1. Then for each k (where 1< k ≤ n), xk . . . xn is

a concatenation of r(xk . . . xn)WFF’s (why?). Take up in turn the different cases, according as x1 is pi ,

K , or N . For instance, consider the case where x1 is N : we also know that r(x2, . . . , xn)> 0 (why?), so

x2, . . . , xn is a concatenation of > 0 WFFs, and can be written ψxk, . . . , xn for some WFF ψ. Compute

r(x1, . . . , xn).

9. Problem: Let ϕ be any expression, not necessarily a WFF. Prove that ϕ is a WFF if and only if both

the following hold: r(ϕ) = 1 and for every terminal segmentψ of ϕ, r(ψ)> 0. Hint: use problems (5),

(8).

10. Problem: Show that if ϕ ∈WFF, and ψ is a proper initial segment of ϕ, then r(ψ)< 1. Hint: use

problem (5).

11 . Problem: Prove the unique readability theorem for WFF. In other words, show that K and N
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(when viewed as operations on WFF) are one-one and have ranges disjoint with each other and with

{pi : i ≥ 0}.

Problem Set II: semantic matters

1. Problem: Let ϕ be a formula all of whose atomic subformulæ are among p1, . . . , pk; also, let v1 and

v2 be valuations such that v1(pi) = v2(θi) for each i ∈ {1, . . . , k}. Show that

v1(ϕ) = v2(ϕ[θ1/p1, . . . , θk/pk]).

2. Definition: A k-place truth function (also called a Boolean function) is a function f : {t, f}k→ {t, f}.
A formula ϕ whose atomic components are p1, . . . , pk generates (or realizes) a truth function f if and

only if v(ϕ) = f (v(p1), . . . , v(pk)) for every valuation v.

3 . Definition: A set of connectives is (truth-functionally) complete if and only if for every k, every

k-place truth function is realized by a formula using only connectives in the set.

4. Problem: Show that the set of connectives {⊃,∼} is complete. Hint: we need to show that for every

k, every k-place truth function is realized by a formula using only connectives in the set. Here is the

case for k = 2: given a 2-place truth function f , construct a table:

t t f (t, t)

t f f (t, f)

f t f (f, t)

f f f (f, f)

For each row where f (x,y) = t write a sentence using atomic letters p1 and p2 representing the combi-

nation of truth values on that row. Let ϕ be the disjunction of all formula thus obtained. Show that ϕ

realizes f .

5. Definition: Let # be the 3-place connective returning value t when and only when a majority of its

arguments returns value t, giving rise to the following truth-table:

x y z #(x , y, z)

t t t t

t t f t

t f t t

t f f f

f t t t

f t f f

f f t f

f f f f
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6 . Problem: Show that any formula ϕ(p, q) using the two propositional variables p and q and the

connective # (but no other variables or connectives) is either equivalent to p or to q.

7. Problem: Show that any formula ϕ(p, q) using the two propositional variables p and q and the two

connectives # and ∼ (but no other variables or connectives) is equivalent either to one of the formulas

p, q, ∼ p, or to ∼q.

8 . Problem: Consider the set of connectives {#,∼}: either show that this set is truth-functionally

complete (perhaps using the techniques from Problem 4), or prove that it is not.

9. Problem: Suppose that |= ϕ ⊃ ψ and that ϕ is not a contradiction and ψ not a tautology. Show

that there is a propositional variable p that occurs in both ϕ and ψ.

10. Definition: If |= ϕ ⊃ψ, then an interpolant for ϕ and ψ is a formula θ such that:

(i) |= ϕ ⊃ θ and |= θ ⊃ψ;

(ii) every propositional variable p in θ occurs in both ϕ and ψ.

11. Problem: Show that if |= ϕ ⊃ψ, and ϕ is neither a contradiction nor ψ a tautology, then there is

an interpolant for ϕ and ψ.

Hint: Suppose |= ϕ ⊃ ψ; by the previous problem ϕ and ψ share at least one propositional variable.

For simplicity, let us write ϕ(p, q) and ψ(q, r) where ϕ and ψ contain just the variables shown. Define

⊥ = ∼(q ⊃ q) and > = q ⊃ q. Consider the formula ϕ(>, q) ∨ ϕ(⊥, q), where ϕ(>, q) is ϕ[>/p], and

similarly for ϕ(⊥, q).

The formula ϕ(>, q) ∨ ϕ(⊥, q) is desired interpolant. For if v(ϕ) = t, then either v(p) = t or

v(p) = f; if the former then v(ϕ(>, q)) = t (why?), and if the latter v(ϕ(⊥, q)) = t (why?). So ϕ |=
ϕ(>, q)∨ϕ(⊥, q).

Conversely, to show ϕ(>, q)∨ϕ(⊥, q) |=ψ, suppose v(ϕ(>, q)) = t; let v′ be just like v except that

v′(p) = t. Then v′(ϕ(p, q)) = t (why?), and since by hypothesis v′(ψ) = t, also v(ψ) = t (why?). Thus,

ϕ(>, q) |=ψ, and similarly ϕ(⊥, q) |=ψ.

12. Problem: Suppose that |= ϕ(p, q) ⊃ ψ(q, r), where neither the former is a contradiction nor the

latter a tautology. Show that ψ(q,>)∧ψ(q,⊥) is an interpolant for ϕ and ψ.

If ϕ is a contradiction orψ is a tautology, then an interpolant can be found if we assume that > and

⊥ are 0-place connectives (propositional constants).

13. Problem: Show that propositional logic is Post-complete in the following sense: if ϕ is any formula

such that 6` ϕ then the system obtained by adding all the substitution instances of ϕ as further axioms

(in addition to our three axiom schemas) is inconsistent.

Hint: let `∗ be the system comprising all the old axioms as well as all the substitution instances of ϕ.

Clearly `∗ extends `. Since 6` ϕ there is a valuation v∗ s.t. v∗(ϕ) = f (why?). Let p1 . . . pk be all the

atomic components of ϕ. Show that there is a substitution instance ϕ∗ of ϕ such that |=∼ ϕ∗, and use

completeness — again! — to reach the desired conclusion.
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Problem Set III: applications of compactness

1. Definition: A map is k-colorable if and only if it is possible to assign to each region one of k distinct

colors in such a way that no two regions that share a border are assigned the same color. (Regions

sharing only one point don’t count as sharing a border.)

2. Problem: Show that any map is k-colorable if and only if any finite submap is k-colorable.

Hint: Given a map M , introduce a sentential language L having the following atomic sentences:

for each region x and color i, an atomic sentence Cx i intuitively saying that x has color i; for any two

regions x and y , an atomic sentence Bx y saying that x and y share a border.

Devise a set Γ saying which regions share a border, that each region is to be assigned one and only

one color, and that no two regions sharing a border can have the same color. Use the compactness

theorem to obtain a k-coloring for the whole map.

3. Definition: A society is a triple S = (B, G, K) where B and G are disjoint sets (the “boys” and the

“girls”), B is finite and K is a binary relation, “x knows y ,” with dom K ⊆ B and rng K ⊆ G.

4. Definition: A society S satisfies the happiness principle if and only for every finite subset B0 of B of

cardinality k the set

{g ∈ G : ∃b(b ∈ B0 ∧ K bg)}

has cardinality ≥ k.

A society satisfies the happiness principle if and only if whenever k boys give a party and each invites

every girls he knows, at least k girls are invited. In particular, each boys knows at least one girl. Given a

subset B′ ⊆ B, let K[B′] be the point-wise image of B′ under K , i.e., the set {g ∈ G : ∃b(b ∈ B′ ∧K bg)}.
Then the happiness condition can be formulated by saying that the cardinality of K[B′] must be greater

than or equal to that of B′.

5. Definition: A perfect matching is a one-one correspondence f between B and G such that if f (b) = g

then K bg.

A perfect matching is a way for each boy to dance with a girl he knows in such a way that no girl

dances with more than one boy and no boy with more than one girl.

6. Problem: Every society satisfying the happiness principle has a perfect matching.

Hint: by induction on the cardinality n of B. The basis is obvious. For the inductive step, consider

the following two cases:

(i) There is k with 0< k < n, and a subset B0 of B of cardinality k such that the cardinality of

G0 = {g ∈ G : ∃b(b ∈ B0 ∧ K bg)}= K[B0]

is exactly k. Then S0 = (B0, G0, K) is a society satisfying the happiness principle (why?). Apply

the inductive hypothesis to obtain a perfect matching f0 for S0. To obtain a perfect matching for

all of S , consider B1 = B \ B0 and G1 = G \ G0. Then S1 = (B1, G1, K) is also a society satisfying

40



the happiness principle (because if B′ ⊆ B1 is such that the cardinality of K[B′] \ G0 is less than

the cardinality of B′ then B0∪B′ is a counterexample to the happiness principle in S ). Therefore,

S1 has a perfect matching f1 by the inductive hypothesis, and f0 ∪ f1 is a perfect matching for S .

(ii) No such k and B0 exist. Then for every B0 the set K[B0] has cardinality at least k+1. Pick a b0 ∈ B

and g0 ∈ G such that K b0 g0. If we put B0 = B \ {b0} and G0 = G \ {g0} then S0 = (B0, G), K

is a society satisfying the happiness principle, and so it has a perfect matching f0 by inductive

hypothesis. A perfect matching f can be obtained from f0 by putting f (b0) = g0.

7 . Definition: A generalized society is a triple S = (B, G, K) where B is allowed to be a countably

infinite set. The society S satisfies the normality principle if every b ∈ B is related by K to at most

finitely many g ∈ G.

8. Problem: Show that every generalized society satisfying the happiness and normality principles has

a perfect matching. Hint: use propositional compactness.

9 . Problem: The normality assumption in the previous problem is necessary: show that there is a

generalized society satisfying the happiness principle that has no perfect matching.

10. Definition: A relation R over a set X is well-founded if and only if there are no infinite descending

chains in R, i.e., if there are no x0, x1, x2, . . . in X such that . . . x2Rx1Rx0.

11. Problem: Assuming Zermelo-Fränkel set theory, Z F , is consistent, show that there are non-well-

founded models of Z F , i.e., models A such that . . . x2 ∈ x1 ∈ x0.

Problem Set IV: the game semantics

1. Definition: Given a structure A, an assignment s, and a formula ϕ (possibly containing free vari-

ables), the game G(A,ϕ, s) is played between two players, Abelard and Eloïse, as follows:

É Each player can play the role of the Verifier or the Falsifier; the game starts with Abelard playing

the Falsifier and Eloïse the Verifier.

É If the game is G(A, P t1 . . . , tn, s) then whoever has the role of the Verifier wins if and only if

A |= P t1 . . . , tn[s]; the Falsifier wins otherwise.

É if the game is G(A,∼ϕ, s) then Abelard and Eloïse switch roles and they play the game G(A,ϕ, s).

É if the game is G(A,ϕ ⊃ψ, s) then the Verifier selects which one of the two games G(A,∼ϕ, s) and

G(A,ψ, s) is to be played next.

É If the game is G(A,∀xϕ, s) then the Falsifier selects an a ∈ Aand the game proceeds as G(A,ϕ, s(a/x)).

É A strategy for a player is a prescription that selects a response for each of the other player’s possible

moves. A winning strategy for a player guarantees a win for that player if he or she follows the

strategy.

2 . Problem: Show that for every ϕ, the game G(A,ϕ, s) is determined, in the sense that either the

verifier has a winning strategy for the game, or the falsifier does (clearly they can’t both have a winning

strategy).
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3. Problem: Show that A |= ϕ[s] if and only if the Verifier has a winning strategy for G(A,ϕ, s).

Hint: by induction on ϕ, obviously. The case for negation needs the previous problem, and for the

Verifier to have a winning strategy for G(A,∀xϕ, s), she must previously select a winning strategy for

each game G(A,ϕ, s(a/x)), to use as a response to the Falsifier’s move.

Problem Set V: definability

1. Definition: Let A be a structure for a language L . A subset B of |A| is definable in L if and only if

there is a formula ϕ(x) with one free variable x such that for all assignments s, A |= ϕ[s] iff s(x) ∈ B.

In other words, for each assignment s:

B = {a : A |= ϕ[s(a/x)]}

2. Problem: Let L be the language containing a 2-place predicate symbol < only (no other constants,

function or predicate symbol — except of course
.
=). Let N be the structure such that |N| = N, and

<N= {(n, m) : n< m}. Prove the following:

1. {0} is definable in N;

2. {1} is definable in N;

3. {2} is definable in N;

4. for each n ∈ N, the set {n} is definable in N;

5. every finite subset of |N| is definable in N;

6. every co-finite subset of |N| is definable in N (where B ⊆ N is co-finite iff N \ B is finite).

3. Definition: An automorphism of a structure A is an isomorphism of A onto itself.

4. Problem: Show that for any structure A, if B is a definable subset of |A|, and h is an automorphism

of A, then B = {h(a) : a ∈ B} (i.e., B is fixed under h).

5 . Problem: As in a previous problem, let L be the first-order language containing < as its only

predicate symbol (besides identity), and let N = (N,<). We know that all the finite or cofinite subsets

of N are definable: show that these are the only definable subsets of N.

Hint: First, let prc(x , y) be the L -formula abbreviating “x is the immediate predecessor of y:”

x < y ∧¬∃z(x < z ∧ z < y).

Now, to any definable subset of N there corresponds a formula ϕ(x) in L . For any such ϕ, consider

the sentence θ :

∃x∀y∀z[(x < y ∧ x < z ∧ prc(y, z)∧ϕ(y)) ⊃ ϕ(z)].

Show that N |= θ if and only if the subset of N defined by ϕ is either finite or cofinite.

Now, let M be a non-standard model elementarily equivalent to N. If a ∈ |M| is non-standard, let

b, c ∈ |M| be greater than a, and let b be the immediate predecessor of c. Then there is an automorphism
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h of M such that h(b) = c (why?). Therefore, if b satisfies ϕ, so does c (why?). It follows that θ is true

in M, and hence also in N. But this implies that the subset of N defined by ϕ is either finite or co-finite.
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