
Module 13
Non-Modal Predicate Logic

G. J. Mattey

May 31, 2007

Contents

1 The Syntax of Predicate Logic 2
1.1 The Expressions of Predicate Logic . 2
1.2 Rules of Formation for PL . 3

2 Formal Semantics for PL 5
2.1 The Domain of Discourse . 5
2.2 The Valuation Function . 5
2.3 Variants of Valuation Functions . 5
2.4 Truth on an Interpretation . 6

3 The Derivational System PD 7
3.1 Universal Quantifier Rules . 8

3.1.1 Universal Elimination . 8
3.1.2 Universal Introduction . 8

3.2 Existential Quantifier Rules . 9
3.2.1 Existential Introduction . 9
3.2.2 Existential Elimination . 10

3.3 Identity Rules . 11
3.3.1 Identity Introduction . 11
3.3.2 Identity Elimination . 11

3.4 Derived Rules . 12

1

1 The Syntax of Predicate Logic

Predicate Logic with identity (PL) is language which is an extension of Sentence Logic (SL), adding to it
some further vocabulary and formation rules.1 The treatment here follows that of Richmond Thomason in
Symbolic Logic: An Introduction (1970), which deviates in some details from better-known presentations of
Predicate Logic. The reason is that Thomason’s system is more readily adaptable to modal predicate logic
than are the standard systems.

1.1 The Expressions of Predicate Logic

The language PL is an extension of the language SL. Sentence letters of SL, falsum, the SL operators, and
the SL punctuation marks are carried over from SL to PL. Predicate Logic adds several new kinds of expres-
sion to this base. We begin with a set of terms, of which there are two kinds: constants and parameters.2

Constants are lower-case Roman letters from ‘a’ to ‘t,’ with or without positive integer subscripts. Param-
eters are the lower case letters ‘u’ and ‘v,’ with or without positive integer subscripts. There is also a set of
variables, which are lower-case letters from ‘w’ to ‘z,’ again with or without positive integer subscripts.3

Next, there is a set of predicate letters, which are capital Roman letters with a positive integer super-
script, such as ‘F2’. The superscript indicates the number of terms, variables, or mixtures of terms and
variables, that have to follow the predicate letter to create a formula of PL.4 The predicate letters may also
carry a positive integer subscript, so ‘F2

3’ is a predicate letter.
A special predicate is the two-place identity predicate. As it will be given its own semantical rule and

rules of inference, we will use a special symbol, ‘=,’ to represent identity.
Finally, there are two quantifier symbols, ‘∃’ and ‘∀,’ called the existential and universal quantifier

symbols, respectively. A pair consisting of a quantifier symbol and a variable, enclosed in parentheses, is a
quantifier. Thus ‘(∀x)’ and ‘(∃y)’ are quantifiers.5

We summarize the set of expressions of PL as follows:

Expressions of PL

• An infinitely large set of sentence letters: A, B,C, . . . ,Z, A1, B1, . . . ,Z1, A2, B2,

• A sentential constant: ‘⊥.’

• Two punctuation marks: ‘(’ and ‘).’

• A set of five operators: ‘∼’, ‘∧’, ‘∨’, ‘⊃’, and ‘≡.’

• A set of constants: a, b, . . . , t, a1, b1, . . . , t1, a2, b2,

• A set of parameters: u, u1, u2, . . . , v, v1, v2,

• A set of variables: w, x, y, z,w1, x1, y1, z1,w2, x2,

1For simplicity, we depart from the nomenclature of The Logic Book, which distinguishes between Predicate Logic proper and
Predicate Logic with Identity, which they call PI. We will be dealing exclusively with Predicate Logic with Identity here.

2Constants are called “names” in some texts. What are here called simply “parameters” are called “individual parameters” by
Thomason.

3In most texts, variables are classified as terms along with constants. Here, the standard role of variables as terms is taken over
by parameters.

4The superscript may be suppressed for readability when it is followed by n terms.
5It is common for the quantifier symbols to be referred to as “quantifiers,” but strictly speaking this is incorrect.

2

• A set of predicate letters: A1, . . . ,Z1, A1
1, . . . ,Z

1
1 , A

1
2, . . . A

2, . . . ,Z2, A2
1, . . . ,Z

2
1 , A

2
2,

• A special two-place predicate symbol ‘=.’

• A set of two quantifier symbols: ‘∀,’ ‘∃.’

1.2 Rules of Formation for PL

To generate the rules of formation for PL, we must add to our stock of meta-variables. As with the operators
in SL, we shall take quantifier symbols and the identity predicate to be names of themselves. For the
other new expressions of PL, we will use bold-face symbols, with or without subscripts. For constants,
we will use ‘a,’ for variables, ‘x,’ ‘y,’ and ‘z’ for parameters, ‘u’ and ‘v’ and for terms (i.e., constants
or parameters) ‘t.’ In each case, we will use no subscript or italicized roman lower-case subscripts for
unspecified constants, variables, parameters and more generally terms, and positive integer subscripts for
specific constants, variables, parameters, and terms. For 1-place predicates, we will use ‘P1,’ with or without
a positive integer subscript, and so-on for predicates of more than one place. We will also refer more
generally to n-place predicates, writing ‘Pn.’

An atomic sentence of PL will be either a sentence letter, falsum, or an n-place predicate letter followed
by n terms. In Sentence Logic, non-atomic, or compound sentences can be built from atomic sentences
through the use of SL-operators. The more interesting compound sentences are built using quantifiers.

It will take some preliminary work to define a sentence that is built from a simpler sentence by prefixing
a quantifier. We begin by letting ‘Φ’ stand for any string of expressions of PL. We will also use the meta-
variables b and c to stand for constants, parameters, or variables. When a string Φ contains an occurrence
of b, then we will write ‘Φ(b).’ Then we can symbolize the result of substituting c for all occurrences of b
within a the string Φ. We will use the notation Φ(c/b) to symbolize such a substitution. In every string of
this kind, a substitution must have been made, and so b was in the original string of expressions.

For example, if the string is ‘xxxxxx,’ then the result of substituting ‘u’ for all occurrences of ‘x’ is
‘uuuuuu.’ If Φ is ‘∼F2au’ (which will turn out to be a sentence of PL), then ‘∼F2ax.’ is the result of
substituting ‘x’ for ‘u’ in the sentence. In the case where Φ is a sentence α of PL, we write ‘α(b)’ and
‘α(c/b).’

Before stating the formation rules, we must provide some definitions which will be used in some of them.
These definitions are stated hypothetically, leaving undefined what a sentence of PL might be. Assume that
α(u) is a sentence of PL. Then a quantified sentence of PL is the result of replacing all the occurrences
of u with occurrences of x, and then affixing a quantifier in front of the sentence. There are two kinds of
quantified sentences: (∀x)α(x/u) and (∃x)α(x/u).

A quantified sentence is always formed from a sentence which does not contain the variable in the
quantifier, but contains instead a parameter for which the variable is substituted. We will refer to the result
of making the substitution (but before the affixing of the quantifier) a quasi-sentence of PL.6

We further define the scope of the quantifier to be the quasi-sentence following the quantifier, which
sentence is said to be governed by the quantifier, Any variable x in the quasi-sentence used to build the
quantified sentences (∀x)α(x/u) or (∃x)α(x/u) is said to be bound by the respective quantifier.

A parameter u occurring in a sentence α(u) is said to be free for a variable v if and only if u does not
occur in the scope of a quantifier containing the variable x. Finally, we will say that (∀x)α(x/u) is a universal
quantification of a sentence α(u), where u is free for x. Similarly, (∃x)α(x/u) is an existential quantification
of a sentence α(u), where u is free for x.

6In the literature, such a string of expressions is often called an “open sentence.”

3

We will give examples of the use of these definitions after stating the formation rules, which will define
the sentences we use in the examples.

Formation Rules of PL

1. All sentence letters of SL are sentences of PL.

2. ‘⊥’ is a sentence of PL.

3. If Pn is a predicate letter of PL and t1, . . . , tn are terms of PL, then Pnt1, . . . , tn is a sentence of PL

4. If t1 and t2 are terms of PL, then t1 = t2 is a sentence of PL.

5. If α is a sentence of PL, then ∼α is a sentence of PL.

6. If α and β are sentences of PL, then (α ∧ β) is a sentence of PL.

7. If α and β are sentences of PL, then (α ∨ β) is a sentence of PL.

8. If α and β are sentences of PL, then (α ⊃ β) is a sentence of PL.

9. If α and β are sentences of PL, then (α ≡ β) is a sentence of PL.

10. If α(u) is a sentence of PL and u is free for x in α(u), then (∀x)α(x/u) is a sentence of PL.

11. If α(u) is a sentence of PL and u is free for x in α(u), then (∃x)α(x/u) is a sentence of PL.

12. Nothing else is a sentence of PL.

Having stated the formation rules defining a sentence of PL, we may now illustrate their use with some
examples. Because ‘F2’ is a two-place predicate letter of PL and ‘u’ and ‘v’ are parameters of PL, ‘F2vu’
is a sentence of PL by clause 3. Since the sentence contains no quantifiers, it is not in the scope of any
quantifiers. Thus the parameters ‘u’ and ‘v’ are free for all variables. Because of this, we can form a
quantified sentence ‘(∀x)F2vx.’ This is done by first generating the quasi-sentence ‘F2vx’ and then affixing
the quantifier to its front. The quasi-sentence is then in the scope of, and is governed by, the quantifier
‘(∀x).’ The variable ‘x’ occurring in ‘(∀x)F2vx’ is bound to its occurrence in ‘(∀x).’ In the newly generated
sentence, we have a remaining parameter, ‘v,’ which is in the scope of a quantifier containing ‘x.’ Therefore,
‘v’ is not free for ‘x’ in ‘(∀x)F2vx.’

If we were to add a conjunct to ‘(∀x)F2vx,’ producing the conjunction ‘(∀x)F2vx∧ (∃x)G2ax,’ the result
would not be a quantified sentence, and the occurrence of ‘x’ in the second conjunct would be bound only
by the quantifier ‘(∃x)’ and not by the quantifier ‘(∀x).’

Now we will note two important consequences of clauses 10 and 11, which guarantee that quantifiers can
be prefixed only to sentences which originally contain a parameter. The first consequence is that there can be
no “vacuous” quantification, in which the variable in the quantifier is not followed by a string of expressions
containing the variable, as for example in the non-sentence ‘(∀x)∼F2vu.’ The definition of α(x/u stipulates
that at least one parameter must be replaced by a variable contained in the quantifier.

The second consequence is that there can be no “redundant” quantification, in which the variable in the
quantifier does occur in the following string but occurs there only because it was already substituted for a
parameter by clause 10 or 11. This is the point of the requirement that the parameter be free for the variable.
In our example, the parameter ‘v’ in the sentence ‘(∀x)∼F2vx’ is not free for ‘x.’ An attempt to form a
universal quantification of this sentence using ‘x’ once again, i.e., ‘(∀x)(∀x)∼F2xx,’ would for this reason
be blocked.

4

2 Formal Semantics for PL

The semantics for PL-sentences is much more complicated than that for SL-sentences. This reflects the
potentially greater complexity of PL-sentences.

2.1 The Domain of Discourse

To generate the semantical system PI, we expand the notion of an interpretation and its valuation function
to interpret the additional syntactical expressions of PL. The interpretation of Sentence Letters and falsum
remain as with SI. In addition, each PI-interpretation has as an element a domain or universe of discourse,
which consists of a set of objects. It is required that the domain contain at least one item. The a PI interpre-
tation is an ordered pair 〈D, v〉.

2.2 The Valuation Function

The valuation function v of an interpretation maps all the constants and parameters of PL into the domain.
That is, each constant and each parameter is associated with one and only one member of the domain.
(Note that a member of the domain may be designated by more than one constant or parameter by v in an
interpretation.) So we say that vI(a) ∈ D and vI(u) ∈ D. In non-modal Predicate Logic, parameters function
semantically like constants, the difference between them showing up only in the derivational system. But in
Modal Predicate Logic, there will in some systems be a substantial difference between the interpretation of
constants and the interpretations of parameters.

Each predicate of PL is n-placed. The valuation function maps an n-place predicate Pn into the set Dn

of all ordered n-tuples drawn from the domain.7 vI(Pn) ∈ Dn. This set is known as the extension of the
predicate. So, for example, for one interpretation I, a domain consists of the numbers 1 and 0, and the
extension of a two-place predicate ‘F2’ is {〈1, 1〉, 〈0, 1〉}.

2.3 Variants of Valuation Functions

The interesting sentences of Predicate Logic are the ones which contain quantifiers. Universally quantified
sentences say something about all members of the domain, and existentially quantified sentences say some-
thing about at least one member of the domain. To interpret quantified sentences, we need to work with the
sentences from which they are formed, i.e., sentences containing parameters.

The key idea here is the notion of variant of a valuation function which assigns a member of the domain
to a parameter u. We will first illustrate a variant and then define it. Suppose that our domain is D and that D
={1, 2}. Then we may have one interpretation I1 where vI1(u) = 1 and another interpretation I2 where vI2(u)
= 2. Suppose further than on both interpretations the extension of ‘F1’ is {〈1〉}. Now consider the sentence
‘F1u.’ On I1, ‘F1u’ is true, and on I2, ‘F1u’ is false. We can say, however, that if vI2 were to be changed so
that vI2(u) = 1, then that variant valuation function would make ‘F1u’ true.

More generally, we will let ‘d,’ with or without integer subscripts, be a meta-variable standing for an
item in the domain. In general, for some d, vI(u) = d. In the previous example, we substituted a member
of the domain d1 (i.e., the number 1) for the member of the domain d2 (i.e., the number 2) as the value of
‘u’. We write this as vI[1/u], or more generally, v[d1/u]. The notation here is apt to be misleading, so it is
worth describing carefully. We do not substitute d for u, but rather we substitute d1 for d2 as the value of
‘u.’ So we should read a variant as being the result of substituting member of the domain d1, as the value

7This set is known as the nth Cartesian product of D.

5

of ‘u,’ for the member of the domain d2 that was the original value of ‘u.’ Thus produces a new valuation
function, but one which has a specific relation to the initial function. The role of variants will become clear
in the discussion of how quantified sentences get their truth-values.

2.4 Truth on an Interpretation

The semantical rules for SI carry over with no modification to PI. Here we will discuss only the peculiarities
of interpeting sentences which are peculiar to PL.

An atomic sentence of PL is an n-place predicate followed by a string of n terms. Such a sentence is
true on an interpretation just in case the ordered n-tuple consisting of the values of each of the terms is in
the extension of the predicate. In the interpretation given above (where ‘F2’ can be understood informally
as standing for the relation of being less than or equal to), suppose ‘a’ is assigned by I the number 0, and
‘b’ as the number 1. Then ‘F2ab’ will be a true sentence of PL on interpertation I because the ordered pair
〈1, 2〉 is in the extension of ‘F2.’

In the special case of the identity predicate ‘=’ flanked by terms, the sentence is true if and only if
the terms on each side are assigned to the same the same individual by the valuation function. In the
interpretation given in the last paragraph, if vI(a) = 1 and vI(u) = 1, then vI(a = u) = T.8

A universally quantified sentence (∀x)(α(x/u)) is true on an interpretation I if and only if the sentence
α(u) is true no matter what member of the domain is taken as the value of ‘u.’ That is, for all members d
of the domain D, vI[d/u](α(u) is true. That is to say, it does not matter which member of the domain the
valuation function vI might assign as the value of u. All such assignments would make the sentence true. In
our example above, the universally quantified sentence ‘(∀x)F1x’ is false. The reason is that vI[2/u](F1u) =
F.

An existentially quantified sentence is true on an interpretation if and only if there is at least one member
of the domain of that interpretation such that, if it is taken as the value of u, the sentence α(u) is true. In our
example, we can see that vI[1/u](F1u) = T, and hence that vI((∃x)F1x) = T.

There will be cases in which quantifiers occur in the scope of other quantifiers. For example, we have
the sentence ‘(∀x)(∃y)G2xy).’ Suppose that for an interpretation I, the domain is the natural numbers and
the relation that ‘G2’ is interpreted as standing for is that of being greater than. So, informally, the sentence
says that for each natural number, there is a greater natural number. The sentence is true on I just in case
for all members di of the domain, vI[di/u]((∃y)G2uy) = T. But under what condition is this sentence true
for all variants of v? Only when for each of them, there is a variant of it (which is a variant of a variant of
v) which makes the core sentence G2uv true. We indicate the variant of the variant with a comma between
substitution conditions, where the variant is noted first and the variant of the variant is noted second. Thus
we have: for some member d j of the domain, vI[di/u,d j/v](G2uv) = T. Now for each di there is a d j, and
so the sentence is in fact true on I.

We are now in a position to state formally the semantical rules for PI.

Semantical Rules for PI

SR-TVA If α is a sentence-letter, then either vI(α)=T or vI(α)=F; it is not the case that vI(α)=T and
vI(α)=F.

SR-⊥ For all I,vI(⊥)=F and vI(⊥),T.
8The same symbol, ‘=,’ is used as both an object-language expression and as a meta-logical symbol for identity. Context will

determine which usage is intended.

6

SR-Pred vI(Pnt1. . . tn)=T if and only if 〈vI(t1),. . . ,vI (tn)〉 ∈ vI(Pn); vI(Pnt1. . . tn)=F if and only if¬(〈vI(t1),. . . ,vI(tn)〉
∈ vI(Pn))

SR-∼ vI(∼α)=T if and only if vI(α)=F; vI(∼α)=F if and only if vI(α)=T.

SR-∧ vI(α ∧ β)=T if and only if vI(α)=T and vI(β)=T; vI(α ∧ β)=F if and only if I(α)=F or vI(β)=F.

SR-∨ vI(α ∨ β)=T if and only if vI(α)=T, or vI(β)=T; vI(α ∨ β)=F if and only if vI(α)=F and vI(β)=F.

SR-⊃ vI(α ⊃ β)=T if and only if vI(α)=F or vI(β)=T; vI(α ⊃ β)=F if and only if vI(α)=T and vI(β)=F.

SR-≡ vI(α ≡ β)=T if and only if either vI(α)=T and vI(β)=T, or vI(α)=F and vI(β)=F; vI(α ≡ β)=F if and
only if either vI(α)=T and vI(β)=F, or vI(α)=F and vI(β)=T.

SR-∀ vI((∀x)(α(x/u))=T (where u is free for x in α(x)) if and only if for all d ∈ D, vI[d/u](α(u)) = T;
vI((∀x)(α(x/u))=F if and only if for some d ∈ D, vI[d/u](α(u)) = F.

SR-∃ vI((∃x)(α(x/u))=T (where u is free for x in α(x)) if and only if for some d ∈ D, vI[d/u](α(u)) = T;
vI((∃x)(α(x/u))=F if and only if for all d ∈ D, vI[d/u](α(u)) = F.

vI(ti=t j)=T if and only if vI(ti)=vI(t j);
vI(ti=t j)=F if and only if vI(ti),vI(t j);

We will assert here without proof that the properties of Quantificational Bivalence and Quantificational
Truth-Functionality hold in the semantical system PI. The semantical rules for the quantifiers are set up in
such a way that all possible interpretations assign at least one truth-value, and no more than one, to each
quantified sentence. The key move in the proofs would be that by the Inductive Hypothesis, the sentences
containing parameters which form the basis for quantified sentences have one and only one truth-value.
The notions of Semantical Entailment in PI, Semantical Equivalence in PI, Validity in PI, and Semantical
Consistency in PI are carried over directly from the semantical system SI.

An example of semantical entailment in PI is this: {(∀x)F1x} �PI F1u, a semantical form of universal
instantiation. Suppose that for an arbitrary interpretation I, vI(∀x)F1x) = T. Then for every d in the domain
of I, v[d/u]I(F1u) = T. In that case, vI(F1u) = T, since vI assigns some member d of the domain to ‘u.’

An example of semantical consistency in PI is that the set ‘{(∃x)F1,∼F1a} is semantically consistent.
Consider an interpretation I with a domain consisting of the numbers 1 and 2, and let vI assign the number 2
to ‘a.’ Finally, let ‘F1 be interpreted as the property of being odd. Then ‘(∃x)F1x’ is true on I because there
is a member of the domain that is odd. But ‘F1a is false in I, because the number assigned by v to ‘a’ is not
odd. Hence ‘∼F1a’ is true on I.

3 The Derivational System PD

The derivational system PD for Predicate Logic consists of four primitive rules for the quantifier, one for
introducing and one for eliminating each of the two quantifiers. There are rules introducing and eliminating
the identity symbol. Other rules function as derived rules in the system.

Before the rules can be stated, we need to extend our meta-logical terminology a bit. Thus far, we
have used the notation α(x/u) to indicate the result of substituting u for all occurrences of x in α. For the
purposes of derivations, we will need to go in the opposite direction and be more general, beginning with

7

a quasi-sentence ‘α(x)’ obtained from removing a quantifier and substituting a term ‘t’ (i.e., a parameter or
a constant) for ‘x.’ Thus we will write ‘α(t/x),’ for some term ‘t.’ The result will be called a substitution
instance of the quantified sentence. For example, ‘F1u’ and ‘F1a’ are a substitution instances of ‘(∀x)F1x.’
The manipulation of substitution instances is central to the derivational rules for predicate logic.

3.1 Universal Quantifier Rules

3.1.1 Universal Elimination

The rule of Universal Elimination (∀E, also known as “Universal Instantiation”) allows one to remove a
universal quantifier and write down a substitution instance of the sentence it governs.

Universal Elimination

(∀x)α(x/u) Already Derived
...

α(t/u) ∀ I

Instantiation may be made to a constant or parameter only, and not to a variable. It must also be uniform,
in that there is only one instantiating term. All occurrences of the variable must be replaced with a term.
(It is often essential to instantiate to the right term, in which case it is best to wait to see what term is
required before instantiating.) We will give an example of the use of ∀ Elimination after stating the rule for
∀ Introduction.

Use of the rule of Universal Introduction will not lead us from truth to falsehood. If a universally
quantified sentence (∀x)α(x/u) is true on an interpretation, then for all members d of its domain, α(u)
will be true if d is assigned to u. (We have already seen an instance of this relation: {(∀x)F1x} �PI F1u.)
Moreover, any sentence which results from the substitution of a constant will also be true, since each constant
is assigned to at least one member of the domain. As will be seen in later modules, this latter condition does
not obtain in some versions of Free Predicate Logic and Modal Predicate Logic based on Free Predicate
Logic.

3.1.2 Universal Introduction

The rule of Universal Introduction (∀ I, also known as “Universal Generalization”) allows one to replace all
occurrences of a parameter (not a constant) with a variable and prefix a universal quantifier to the beginning
of the resulting sentence. This is the first time that the role of a parameter differs from that of a constant.
The rationale for using parameters is that we would like to have a way of indicating an arbitrary member
of the domain. Universal Generalization is sound when something is shown to hold for a member of the
domain without taking into account anything else about it. In that case, a given interpretation might assign to
u any member of the domain at all, and so what is concluded about such an arbitrary member of the domain
applies to all members of the domain.

To guarantee arbitrariness, we introduce a (non-modal) version of a restricted scope line. The line will
be flagged by a parameter and will be treated as a “barrier” in the sense that no sentence containing that
parameter may be reiterated across it. Because the parameter is “trapped,” as it were, behind the barrier,
no sentences containing it play any role in the results for it that are obtained within the confines of the

8

barrier. (Keep in mind that no inference rules may be applied to sentences outside a restricted scope line:
any previous sentence that might be involved in the use of a rule of inference must be first reiterated.)

Universal Introduction
...

u

...

α(u)

(∀x)α(x/u) ∀ I

Provided that: No sentence containing u is reiterated across the restricted scope line.

The following is an example of the use of the rule of Universal Generalization.

Proof that: {(∀x)(Fx ∧Gx)} `PD (∀y)Fy

1 (∀x)(Fx ∧Gx) Assumption

2 u (∀x)(Fx ∧Gx) 1 Reiteration

3 Fu ∧Gu 2 ∀ E

4 Fu 3 & E

5 (∀y)Fy 4 ∀ I

3.2 Existential Quantifier Rules

3.2.1 Existential Introduction

The rule of Existential Introduction (∃ I, also known as “Existential Generalization”) allows one to replace
any number of occurrences of a term with a free variable and prefix an existential quantifier to the beginning
of the resulting sentence.

Existential Introduction

α(t/u) Already Derived
...

(∃x)α(x/u) ∃ I

There are no restrictions on the generalization. One may generalize on one of the terms, more than one, or
all of them.

The soundness of this rule depends on the fact that each term t is assigned by a given interpretation to a
member d of the domain. If a sentence containing that term is true, then by the semantical rule for the ‘∃’
operator, its existential quantification is true as well.

Here is an example of the use of the rule of Existential Generalization. Note that a parameter could have
been used instead of a constant.

9

Proof that: {(∀x)Fx} `PD (∃x)Fx

1 (∀x)Fx Assumption

2 Fu 1 ∀ E

3 (∃y)Fy 2 ∃ I

3.2.2 Existential Elimination

The rule of Existential Elimination (∃ E, also known as “Existential Instantiation”) allows one to remove an
existential quantifier from (∃x)α(x), replacing it with a substitution instance α(a/x), made with a constant a
not currently used, within a new assumption. A sentence β not containing the constant a is derived from that
assumption, and the assumption is discharged, with the sentence β brought out.

Existential Elimination

(∃x)α(x/u) Already derived
u α(u) Assumption
...

β

β ∃ E

Provided that: no sentence containing u is reiterated across the restricted scope line,
u does not occur in β.

The soundness of this rule is more complicated to explain. We suppose that some existentially quantified
sentence is true on an interpretation. Then we assume that it is true for one of its substitution instances,
where a parameter is substituted for the variable and the quantifier removed. That the assignment to this
parameter is arbitrary is guaranteed by the fact that no sentence containing it can be reiterated. If a sentence
β not containing the parameter is derived, the role of the parameter has been exhausted, so to speak, and the
sentence is true.

The following are two examples of the use of Existential Elimination.

To prove: {(∃x)Fx} `PD (∃y)Fy

1 (∃x)Fx Assumption

2 u Fu Assumption

3 (∃y)Fy 2 ∃ I

4 (∃y)Fy 1 2-3 ∃ E

10

To prove: {(∃x)(Fx ∧Gx)} `PD (∃y)Fy ∧ (∃z)Gz

1 (∃x)(Fx ∧Gx) Assumption

2 u Fu ∧Gu Assumption

3 Fu 2 ∧ E

4 Gu 2 ∧ E

5 (∃y)Fy 3 ∃ I

6 (∃z)Gz 4 ∃ I

7 (∃y)Fy ∧ (∃z)Gz 5 6 ∧ I

8 (∃y)Fy ∧ (∃z)Gz 1 2-7 ∃ E

3.3 Identity Rules

Here we give rules for introducing and eliminating sentences containing the identity sign.

3.3.1 Identity Introduction

The rule for introducing an identity-sentence is unique, in that it allows us to write down a sentence without
any regard from what has come before it. Thus, it functions in the manner of an axiom.

Identity Introduction
...

t = t = I

In the semantics, an interpretation always assigns a term t to a member of the domain t. The ordered
pair 〈vI(t), vI(t)〉 is guaranteed to be in the extension of ‘=.’

3.3.2 Identity Elimination

The rule for eliminating an identity sentence allows for the substitution, in another sentence, of a term ti that
occurs on one side of it for the term t j that occurs on the other side. The order of occurrence of the identity
sentence and the sentence in which the substitution is made does not affect the use of the rule. Also, the
identity-sentence and the substitution-sentence may be the same.

Identity Elimination

α(ti) Already Derived
...

ti = t j Already Derived
...

α(t j/ti) = E

11

This rule is sound because if both ti and t j are assigned the same member d of the domain, as would be
the case if the identity is true on an interpretation, then the way in which α(ti) is interpreted will be exactly
the way α(t j) is interpreted, since vI(ti) = vI(t j).

Here is an example of both rules at work.

To prove: `PD {(∀x)(∀y)(x = y ⊃ y = x)

1 u v u = v Assumption

2 u = u = I

3 v = u 1 2 = E

4 u = v ⊃ v = u 1-3 ⊃ I

5 (∀y)(u = y ⊃ y = u) 4 ∀ I

6 (∀x)(∀y)(x = y ⊃ y = x) 5 ∀ I

3.4 Derived Rules

Rules of Quantifier Exchange are easily derived within PD. The rules will first be stated, and then the
derivation of the first rule will be given. Derivation of the other rules will be left as an exercise. Note that
in sentences of the form α(x/u), the parameter u does not occur, as it has been replaced by x. Hence, there
is no problem with reiterating such sentences (or sentences of which they are components) across restricted
scope lines.

Quantifier Exchange

∼(∀x)α(x/u) Already Derived

(∃x)∼α(x/u) ∼∀

∼(∃x)α(x/u) Already Derived

(∀x)∼α(x/u) ∼∃

(∃x)∼α(x/u) Already Derived

∼(∀x)α(x/u) ∃∼

(∀x)∼α(x/u) Already Derived

∼(∃x)α(x/u) ∀∼

12

To prove: {∼(∀x)α(x/u} `PD (∃x)∼α(x/u)

∼(∀x)α(x/u) Already Derived

∼(∃x)∼α(x/u) Assumption
u ∼α(u) Assumption

(∃x)∼α(x/u) ∃ I

∼(∃x)∼α(x/u) Reiteration

∼α(x/u) ∼ E

(∀x)α(x/u) ∀ I

∼(∀x)α(x/u) Reiteration

(∃x)∼α(x/u) ∼ E

The reader might note the structuraly similarity between the Quantifier Exchange rules and the Duality
rules for derivations in Modal Sentential Logic. This similarity has a semantical underpinning. In the meta-
logic we quantify over possible worlds, and this quantification is reflected in the semantical behavior of the
modal operators. The most straightforward case is with the semantical system S5I without the accessibility
relation. The claim in the meta-language that at all worlds, it is not the case that α is true (the condition for
the truth of ‘�∼α,’ is equivalent to the claim that there is no world at α is true, which is the condition for the
truth of ‘∼♦α.’

13

