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The goal of this text is to introduce the reader to some of the main systems of modal logic. It is customary
to preface the treatment of modal logics with preliminary accounts of non-modal logics, and this in two ways.
First, there is a treatment of Sentential Logic, which is followed by a treatment of systems created by adding
modal symbolism to the symbolism of Sentential Logic.1 Second, there is a treatment of Predicate Logic,
which is followed by systems adding modal symbolism to it.2 This text will adhere to that custom, though
it is quite feasible to introduce modal Predicate Logic from the start.

The logic of sentences or propositions was first investigated by the ancient Stoics, who recognized five
rules of inference.3 It was investigated extensively in the nineteenth century by such logicians as Augustus
De Morgan, George Boole, and Ernst Schröder, who explored the relations between logic and algebra.4 The
first presentation in the modern form was by Gottlob Frege5, and its first in the current notation was by
Bertrand Russell and Alfred North Whitehead.6 The present-day truth-table semantics was developed by
Ludwig Wittgenstein7 and Emil Post.8 Non-axiomatic, or “natural deduction” systems were introduced by
Gerhard Gentzen,9 and given the form used here by Frederick Fitch.10

1 Syntax of Sentential Logic

Sentential Logic (hereinafter called ‘SL,’) is a formal language which is entirely artificial or conventional.
All formal languages have a syntax, which determines what symbols belong to the language and how those
symbols can be combined to form grammatically correct strings of symbols. Here we will give one formu-
lation of SL, with the recognition that there are many variant ways of specifying its symbolism.

1.1 Expressions of SL

The formal language SL consists of a set of expressions (its vocabulary) and a set of rules of formation
which generate a set of sentences of SL.11 The expressions of SL consist of the following:

Expressions of SL

• An infinitely large set of sentence letters: A, B,C, . . . ,Z, A1, B1, . . . ,Z1, A2, B2, . . ..

• A sentential constant: ‘⊥.’

• A set of two punctuation marks: ‘(’ and ‘).’

• A set of five operators: ‘∼,’ ‘∧,’ ‘∨,’ ‘⊃,’ and ‘≡.’

1What is here called “sentential logic” is elsewhere called “sentence logic,” “propositional logic,” “propositional calculus,”
“boolean logic,” “truth-functional logic,” and “the two-valued logic.”

2What is here called “predicate logic” is elsewhere called “predicate calculus,” “quantificational logic,” “first-order logic,”
among other things.

3See William and Martha Kneale, The Development of Logic, 1962, Chapter III, Section 5.
4C. I. Lewis gives a lengthy description of these developments in his Survey of Symbolic Logic, 1918, Chapters I-III.
5Begriffsschrift, 1879
6Principia Mathematica, 1910
7Tractatus Logico-Philosophicus, 1921
8“Introduction to a General Theory of Elementary Propositions,” The American Journal of Mathematics, Vll. XLIII (1921), pp.

163-185.
9“Untersuchungen über das logische Schliessen,” Mathematische Zeitschrift, Vol. 39 (1934), pp. 176-210.

10Symbolic Logic: An Introduction, 1952.
11The strings of symbols generated by the formation rules are often called “well-formed formulas” or “wffs.”
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1.2 Rules of Formation for SL

In specifying our rules of formation of sentences of SL, we use the meta-linguistic variables (or meta-
variables) ‘α’, ‘β’, and ‘γ,’ with or without primes or positive integer subscripts, to refer to sentences.12

Thus we will be writing things like, “Suppose γ1, . . . , γn are sentences of SL.” We will refer to sets of
sentences of SL using upper-case Greek letters, such as ‘Γ.’ Further, we will distinguish those sentences of
SL which have no structure as atomic sentences from those compound sentences which have structure. The
former are specified in the first two formation rules, the latter in the next five.

Formation Rules of SL

1. All sentence letters are sentences of SL.

2. ‘⊥’ is a sentence of SL.

3. If α is a sentence of SL, then ∼α is a sentence of SL.13

4. If α and β are sentences of SL, then (α ∧ β) is a sentence of SL.

5. If α and β are sentences of SL, then (α ∨ β) is a sentence of SL.

6. If α and β are sentences of SL, then (α ⊃ β) is a sentence of SL.

7. If α and β are sentences of SL, then (α ≡ β) is a sentence of SL.

8. Nothing else is a sentence of SL.

A convention we shall employ is that outermost parentheses may be omitted from any sentence which is the
end-result of the application of the formation rules. Internal parentheses are always retained.14

The definition of a sentence of SL is recursive. Recursive definitions of sentences of formal languages
begin with a listing of basic sentences. For SL, the basic sentences are atomic sentences. The second element
of a recursive definition of a sentence is a set of rules for generating more complex sentences from simpler
ones. So every compound sentence is made up of atomic sentences, to which the rules are applied initially.
The results of the intitial application of the rules may then be used as the basis for the formulation of more
complex sentences by the application of formation rules to them. The last element of the formation rules is
a “closure” clause which states that no string of symbols that is not generated by the rules is a sentence.

The recursive character of the definition of a sentence is of crucial importance for our understanding
of the language. In much of what follows, we will be developing some of the meta-logic of SL and more
sophisticated languages. That is, we will be proving that the language and its sentences have certain proper-
ties. The meta-logical proofs that we give will generally rely on the recursive character of the definition of
a sentence. One proof technique, mathematical induction is very powerful, and it derives its power from the
structure of the definition of a sentence. We shall soon have occasion to make use of it.

2 Semantics for Sentential Logic

Sentences of SL have always been informally intended to abbreviate sentences of natural language, or per-
haps to stand in for the propositions which those sentences express. The operators are intended to stand for

12These meta-variables will also be used to refer to sentences of the modal languages to follow.
13The operators are properly part of the object language, SL, but they are also used as names of themselves in meta-linguistic

expressions.
14Many logic texts employ other conventions which eliminate the display of some or all internal parentheses
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grammatical particles of natural language. Thus ‘∼’ is taken to stand for the word ‘not’ or the phrase ‘it
is not the case that,” and the expressions ‘∧’ is taken to stand for the word ‘and’ or the word ‘but.’ This
relation of symbols to natural language is only a first step in developing a system of logic. In such a system,
we are primarily interested in how sentences with certain structures are related to other sentences with their
structures. More specifially, we are primarily interested in the question of which sentences follow from or
are logical consequences of other sentences.

We could, as do those who produce axiomatic or natural-deduction systems, proceed directly to identify
certain sentences and/or patterns of inference as generating correct logical consequences. Another approach,
which will be used here, is first to develop in a more formal way the meanings of the sentences of SL, by
generating a semantical system for interpreting them rigorously. This system will give rise to a semantical
version of the notion of logical consequence. Then we develop a system based on rules of inference and
an axiom system, both of which generate the relations of logical consequence which are in a certain way
equivalent.

From a formal standpoint, sentences of SL are interpreted as designating exactly one of two truth-values,
‘T’ and ‘F.’ Informally, we think of ‘T’ as standing for truth or being true, and ‘F’ as standing for falsehood
or being false. But in fact, the only thing our semantics requires is that they stand for two distinct objects,
perhaps even the letters ‘T’ and ‘F’ themselves! In computer applications, ‘T’ and ‘F’ might stand for the
state of a transistor being in the “on” position or in the “off” position, respectively.15 At times in what
follows, we will take ‘T’ to refer to truth and ‘F’ to falsehood.

The sentence letters of SL are completely open as far as which truth-value they have. Any sentence
letter may be interpreted as having the value T or the value F. The sentential constant ‘⊥’ (“falsum”) is
always interpreted as having the value F. The assignment of truth-values for compound sentences is based
on an informal understanding of the meanings of the respective operators. The truth-values of compound
sentences (i.e., sentences formed using formation rules 3 through 7) are uniquely determined by the truth-
values of their component parts. For this reason, the semantics is called truth-functional. A function may
be understood here as a rule which yields no more than one output for every input. In Section 2.3.2 we will
prove that the semantical rules for SL yield truth-functions.

2.1 Truth-Table Semantics

The most commonly-taught form of semantics for SL is based on the truth-table. We will first introduce the
interpretations of the sentential operators using truth-table semantics. Later, a more abstract version of the
semantics will be given.

A row of a truth-table always has an ‘F’ under ‘falsum.’ It has at least one of the values T or F, but not
both, under each sentence-letter displayed in it. In addition, it makes has at least one of T or F, but not both,
under compound sentences formed from the displayed sentence-letters. The specific truth-values are based
on the following schemata.

2.1.1 Falsum

The falsum sentential constant has the same value whenever it appears in a truth-table.

⊥

F

If falsum appears in a sentence of SL, it is always assigned F, no matter where in the sentence it appears.

15Hughes and Cresswell in A New Introduction to Modal Logic use the values 1 and 0 rather than T and F, respectively.
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2.1.2 Negation

The tilde, ‘∼’ is intended to represent negation.16 The orthodox view of negation is that it effects a reversal
of the truth-value of the negated sentences.17 So if α has the value T, then ∼α has the value F. And if α
has the value F, then ∼α has the value T. The semantical behavior of negation is seen graphically in the
following truth-table.

α ∼α

T F
F T

2.1.3 Conjunction

The inverted wedge ‘∧’ is intended to symbolize conjunction.18 It is generally held that a conjunction is true
just in case both its conjuncts are true. Thus, if either conjunct is false, the conjunction is false as well.

α β α ∧ β

T T T
T F F
F T F
F F F

2.1.4 Disjunction

The wedge ‘∨’ is intended to symbolize inclusive disjunction.19 The standard view about inclusive disjunc-
tion is that such a sentence is true just in case at least one of its disjuncts is true.20 So, if either disjunct is
true, the disjunction is true as well.

α β α ∨ β

T T T
T F T
F T T
F F F

2.1.5 Material Conditional

The horseshoe ‘⊃’ is intended to represent an “if . . . then ” sentence or conditional.21 The conditional
the horseshoe represents is generally known as the “material” conditional. Sometimes it is said to represent
“material implication.”22

As far as truth-values are concerned, an uncontroversial property of any conditional is that it is false
when its antecedent is true and its consequent is false. This gives us one row of a truth-table.

16Negation is often indicated by ‘¬’ and sometimes by ‘–.’ Lewis used ‘–’ in his original papers on modal logic, interpreting ‘∼’
as “it is impossible that.”

17Negation is treated differently in the semantics for intuitionistic and relevant (or “relevance”) logics, but this matter is beyond
the scope of the current text.

18Other conjunction symbols are ‘&’ and ‘�.’
19An exclusive disjunction is one in which the disjunction is false if both disjuncts are true.
20Some relevant logics recognize an “intensional” form of disjunction which is not truth-functional.
21Many texts use an arrow ‘→’ instead of the horseshoe.
22This usage goes back to Russell and Whitehead in Principia Mathematica.

6



α β α ⊃ β

T F F

In all other cases, the conditional is said to be true. This yields a full truth-table.

α β α ⊃ β

T T T
T F F
F T T
F F T

Most logicians hold that the material conditional is the weakest form of a conditional. That is, the material
conditional fulfills the most important (if not the only) necessary condition for any conditional, which is
expressed on the second line of the truth-table. It might be held that the material conditional does not fulfill
a further necessary condition for a conditional, i.e., that there be some connection between the content of
the antecedent and that of the consequent. The truth of the antecedent of a material conditional may not be
a “condition” of the truth of the consequent.

Even if one accepts that α ⊃ β expresses a conditional, it seems wrong to say that it expresses any kind
of logical implication. This was the objection of C.I. Lewis that led him to invent modern modal logic.23 In
most cases, a true material conditional is true (or formally, has the value T) in a way that does not determine
whether there is a relation of implication.

Consider two sentence letters, ‘A’ and ‘B,’ and the following row of a truth-table for a material condi-
tional formed from them:

A B A ⊃ B
T T T

On this interpretation, ‘A ⊃ B’ has the value T. Should we therefore say that ‘A’ implies ‘B’? There is a
reason to think that we should not. The fact that ‘B’ is assigned T has nothing to do with any fact of logic.
‘B’ could just as easily be interpreted as having the value F given that ‘A’ has the value T, as is seen from
the following partial truth-table:

A B A ⊃ B
T F F

On this row of the truth-table, the material conditional has the value F, which might lead one to conclude
that ‘A’ does not imply ‘B.’ This is what makes the conditional “material.” It is the material facts about the
truth-values of its components which determine whether it is true or false. So ‘A’ “materially implies” ‘B’
in some cases and not in other cases, depending on what factually is the case.

The upshot seems to be that the truth-value of a material conditional on a row of a truth-table is not
enough to establish any kind of logical implication, which ought to be independent of any facts that could
be either true or false. Perhaps what is needed to express logical implication is that the material conditional
be true on all rows of the truth-table. (With this stricter condition, the sentence letter ‘A’ does not imply the
sentence letter ‘B.’) For any two sentences α and β, if α ⊃ β is true on all rows of a truth-table, there is no
row on which α has the value T and β has the value F.

It is worth exploring this suggestion a little further. It is easy to establish by truth-tables that there is no
row on the truth-table in which ‘A’ is true and ‘B ⊃ A’ is false. So we might wish to say that ‘A’ strictly

23See E. M. Curley, “The Development of Lewis’ Theory of Strict Implication,” Notre Dame Journal of Formal Logic Vol. XVI,
No. 4, pp. 517-530.
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implies ‘B ⊃ A.’ Some people understand this to mean that a true sentence is implied by every sentence.
That is, if ‘A’ is true, ‘A’ is implied by ‘B’ because ‘B ⊃ A’ is true. If ‘B ⊃ A’ is taken to express implication,
then it would be the case that a true sentence ‘A’ is implied by any sentence. But in fact, the only kind of
“implication” we have with ‘A ⊃ B’ is “material implication,” as we have seen. Since ‘A’ and ‘B’ are
sentence letters, there is a row on a truth-table on which ‘A’ is true and ‘B’ is false. It is a trivial fact of the
semantics that a true sentence is “materially implied” by any sentence, and this is all that is contained in the
claim that a true sentence is implied by every sentence.

A further consideration in this connection is the fact that ‘B ⊃ A’ is equivalent in the semantics to
‘∼B ∨ A.’ As Lewis pointed out, this loose connection by inclusive disjunction seems hardly strong enough
to warrant the title “implication.”

2.1.6 Material Biconditional

The material biconditional, expressed by the triple-bar ‘≡,’ has the same truth-table as the conjunction of two
material conditionals.24 Such a biconditional is true just in case its components have the same truth-value.

α β α ≡ β

T T T
T F F
F T F
F F T

Whether the triple-bar should be understood as a genuine biconditional or as expressing co-implication
hinges on whether the material conditional should be understood as a genuine conditional or as expressing
implication, so it will not be discussed further here.

2.2 Formal Semantics for SL

The truth-table method for determining the truth-values of sentences of SL has been presented in an informal
way. In what follows, the semantics for SL will be presented through the use of explicit definitions and rules.
This way of approaching the semantics of SL (and richer languages) will be referred to as formal semantics.

The core notion in the formal semantics for Sentential Logic is that of an interpretation. An SL-
interpretation is defined recursively. We describe a set of semantical rules which govern any interpretation.
The base component is a collective assignment of truth-values (or truth-value assignment, TVA) to all the
sentence-letters of SL. The TVA made by an interpretation gives to each sentence-letter either the value T
or the value F, but not both, as is done for truth-tables.25 The other component is a set of semantical rules
which determine the truth-values of falsum and the compound sentences of SL. These rules can be seen as
formal ways of specifying how to determine truth-values in the columns under compound sentences and
falsum in truth-tables.

A feature of the semantical rules as stated here is that they are biconditionals. In reasoning through
truth-tables, we are often in a position where we wish to determine the truth-values of simpler components
of a compound sentence. Thus we say that if α ∧ β has the value T, then β has the value T. This “reverse”
reasoning will prove to be crucial to proving some important meta-logical properties of SI.

24Sometimes the material biconditional is symbolized as ‘↔.’
25We shall call such an assignment a complete TVA, which covers infinitely many sentence letters. In providing specfic truth-

tables, we work with partial truth-value assignments, which leave out the values of expressions of SL not found in the sentences
under evaluation.
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2.2.1 Semantical Rules for SL

The meta-variable ‘I’ (with or without primes or positive integer subscripts) will be used to refer to an
unspecified or arbitrary interpretation. I itself is an ordered set whose only member is a function which
maps sentence-letters to truth-values. We shall call such a function a valuation-function and represent it
with the meta-variable ‘v’ (with or without primes or positive integer subscripts). Thus I = 〈v〉.26 Since
different valuation-functions will be associated with different interpretations, we will label the valuation-
function v for interpretation I as ‘vI.’ To state that an unspecified interpretation I assigns the value T to an
unspecified sentence α we write:

vI(α)=T.

For a specific sentence of SL, A ∧ B, which has the value T based on I, we would write:

vI(A ∧ B)=T.

We may now specify in formal notation the semantical rules governing valuation-functions in Sentential
Logic.

SR-TVA If α is a sentence-letter, then either vI(α)=T or vI(α)=F; it is not the case that vI(α)=T and
vI(α)=F.

SR-⊥ For all I,vI(⊥)=F and vI(⊥),T.

SR-∼ vI(∼α)=T if and only if vI(α)=F; vI(∼α)=F if and only if vI(α)=T.

SR-∧ vI(α ∧ β)=T if and only if vI(α)=T and vI(β)=T; vI(α ∧ β)=F if and only if vI(α)=F or vI(β)=F.

SR-∨ vI(α ∨ β)=T if and only if vI(α)=T, or vI(β)=T; vI(α ∨ β)=F if and only if vI(α)=F and vI(β)=F.

SR-⊃ vI(α ⊃ β)=T if and only if vI(α)=F or vI(β)=T; vI(α ⊃ β)=F if and only if vI(α)=T and vI(β)=F.

SR-≡ vI(α ≡ β)=T if and only if either vI(α)=T and vI(β)=T, or vI(α)=F and vI(β)=F; vI(α ≡ β)=F if and
only if either vI(α)=T and vI(β)=F, or vI(α)=F and vI(β)=T.

The semantical rules taken together make up a semantical system for SL. We will call the present system
“SI” (for “sentential, interpretation”). When referring to a specific interpretation, we shall use the non-
boldface letter ‘I’ (with or without primes or positive integer subscripts). Similarly, we will use the non-
boldface letter ‘v’ to refer to a specific valuation function. For example, to say that a valuation function v in
an interpretation I makes ‘A’ true, we write: vI(A)=T.

2.3 Semantical Properties and Relations

Having given formal definitions for the truth or falsehood of sentences of SL, we may now turn to some of the
important semantical properties and relations of SL sentences. These properties and relations follow directly
from the semantical rules which make up the semantical system SI, which closely parallel the formation
rules for sentences of the language. We will engage in meta-logical reasoning in proving that the properties
and relations hold. The results of our reasoning will be meta-theorems. We will also be using this kind of
reasoning for other purposes.

26The reason for representing I as an ordered one-tuple will become apparent when the semantics is extended to cover modal
sentences.
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In most logic texts, meta-logical reasoning is done informally. We will do some informal semantical
reasoning in this text, but in many cases, our reasoning will be of a more formal sort. Specifically, we will
employ meta-logical derivations to reason to our conclusions. These derivations will be in predicate logic,
and they will appeal to the semantical rules as well as to the rules of inference of predicate logic. In our
meta-logical reasoning, we will be using meta-logical symbols which correspond to English expressions.

Meta-Logical Symbols

Not ¬

And
∧

Or
∨

Only if →

If and only if ↔

For all Π

There is Σ

We will also use generally accepted rules of inference and annotations for them. The style of the proofs
will for the most part parallel the way truth-tables might be used to argue for the same results.

2.3.1 Bivalence

The first meta-logical property we will investigate is bivalence: every sentence of SL has either the value T
or F.

BV: vI(α) = T
∨

vI(α) = F

The semantical rules stipulate that all the atomic sentences have either the value T or the value F. So
it remains to be shown that all compound sentences have one of these two values. The argument is that if
all of the components of a compound sentence have a truth-value, the compound sentence itself has a truth
value. This can be seen by considering all the operators. If α has the value T, then ∼α has the value F,
and if α has the value F, then ∼α has the value T. The cases of the two-place operators are the same. The
semantical rules guarantee that if the sentences joined by the operators have truth-values, then so does the
compound sentence. So, since all the atomic sentences have truth-values, any compound sentence generated
from them has a truth-value, and any compound sentences generated from the resulting compound sentences
have truth-values, etc. This argument is an informal application of mathematical induction.

We will now undertake part of a formal proof by mathematical induction. A proof by mathematical
induction has three parts. The first is the basis step, where the property is shown to hold for some set of
objects, which in the proofs to follow will be atomic sentences. Next, an inductive hypothesis is made. It
is assumed that the property in question holds for all objects with less than a specified level of complexity
n. In the proofs to follow, n will be the number of operators in a sentence. Finally, in an induction step it is
shown that the property holds for objects with complexity n. With this, the proof is concluded, as we have
shown that the property holds for objects of any complexity. In our meta-logical proofs we will routinely
omit noting that the reasoning applies to all interpretations because the choice of I in the proof is arbitrary.

Proof of Bivalence by mathematical induction on the number of connective n of α.

Basis Step. n = 0. Case 1. α is a sentence letter. By SR-TVA, every sentence letter has at least one truth-
value, so vI(α) = T

∨
vI(α) = F. Case 2. α is ⊥. Since vI(⊥) = F, it follows that vI(⊥) = T

∨
vI(⊥) = F.

Inductive Hypothesis. Suppose that for all sentences αwith fewer than n operators, vI(α) = T
∨

vI(α) =

F.
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Induction Step. Let α contain n operators. The goal is to show that vI(α) = T
∨

vI(α) = F. We must
consider five cases, which reflect what α might be.

Case 1. α is ∼β.

1 vI(β) = T
∨

vI(β) = F Inductive hypothesis

2 vI(β) = T Assumption

3 vI(∼β) = F 1 SR-∼

4 vI(∼β) = T
∨

vI(∼β) = F 3
∨

I

5 vI(β) = F Assumption

6 vI(∼β) = T 5 SR-∼

7 vI(∼β) = T
∨

vI(∼β) = F 6
∨

I

8 vI(∼β) = T
∨

vI(∼β) = F 1 2-4 5-7
∨

E

Case 2. α is β ∧ γ.

1 vI(β) = T
∨

vI(β) = F Inductive hypothesis

2 vI(γ) = T
∨

vI(γ) = F Inductive hypothesis

3 vI(β) = T Assumption

4 vI(γ) = T Assumption

5 vI(β ∧ γ) = T 3 4 SR-∧

6 vI(β ∧ γ) = T
∨

vI(β ∧ γ) = F 5
∨

I

7 vI(γ) = F Assumption

8 vI(β ∧ γ) = F 7 SR-∧

9 vI(β ∧ γ) = T
∨

vI(β ∧ γ) = F 8
∨

I

10 vI(β ∧ γ) = T
∨

vI(β ∧ γ) = F 2 4-6 7-9
∨

E

11 vI(β) = F Assumption

12 vI(β ∧ γ) = F 11 SR-∧

13 vI(β ∧ γ) = T
∨

vI(β ∧ γ) = F 12
∨

I

14 vI(β ∧ γ) = T
∨

vI(β ∧ γ) = F 1 3-10 11-13
∨

E

Case 3. α is β ∨ γ.

Case 4. α is β ⊃ γ.

Case 5. α is β ≡ γ.

11



The last three cases may be completed as an exercise.
So we have shown that given the assumption that sentences with fewer than n operators have at least one

truth-value, any sentence with n operators, no matter how it is formed, has at least one truth-value. And since
all sentences with 0 operators have at least one truth-value, we can conclude that no matter how complex a
sentence, it must have at least one truth-value.

2.3.2 Truth-Functionality

It was noted earlier that the operators as interpreted in SI are truth-functional. If one begins with a sentence
or two sentences having a single truth-value, the sentence resulting from the application of the formation
rule for a given operator will have only a single truth-value. In semantical system SI, for any sentence α,
and any interpretation I, it is not the case that α has both the value T and the value F.

TF: ¬(vI(α) = T
∧

vI(α) = F).

We will say that because no sentence has more than one truth-value, SI is truth-functional. A partial
proof TF will be given. The last three cases can be completed as an exercise.

Proof of Truth-Functionality by mathematical induction on the number of connectives n of α.

Basis Step. n = 0. Case 1. α is a sentence letter. By SR-TVA, no sentence letter has more than one
truth-value, so ¬(vI(α) = T

∧
vI(α) = F). Case 2. α is ⊥. Since for any I, vI(⊥) = F and never T, it follows

that ¬(vI(⊥) = T
∧

vI(⊥) = F).
Inductive Hypothesis. Suppose that for all sentences αwith fewer than n operators, ¬(vI(α) = T

∧
vI(α) =

F).
Induction Step. Let α contain n operators. We may distinguish five cases.
Case 1. α is ∼β. (In the proofs of this and the next case, we will use a derived meta-logical rule which

we will call “Negated Conjunction.” From ∼α we may infer ∼(α ∧ β).)
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1 ¬(vI(β) = T
∧

vI(β) = F) Inductive hypothesis

2 ¬vI(β) = T
∨
¬vI(β) = F 1 De Morgan’s

3 vI(β) = T
∨

vI(β) = F BV

4 vI(β) = T Assumption

5 ¬¬vI(β) = T 4 Double Negation

6 ¬vI(β) = F 2 5 Disjunctive Syllogism

7 ¬vI(∼β) = T 6 SR-∼

8 ¬(vI(∼β) = T
∧

vI(∼β) = F) 7 Negated Conjunction

9 vI(β) = F Assumption

10 ¬¬vI(β) = F 9 Double Negation

11 ¬vI(β) = T 2 10 Disjunctive Syllogism

12 ¬vI(∼β) = F 11 SR-∼

13 ¬(vI(∼β) = T
∧
¬vI(∼β) = F) 12 Negated Conjunction

14 ¬(vI(∼β) = T
∧
¬vI(∼β) = F) 3 4-8 9-13

∨
E

Exercise. Prove the result by assuming the negation of the conclusion.

Case 2. α is β ∧ γ.
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1 ¬(vI(β) = T
∧

vI(β) = F) Inductive hypothesis

2 ¬(vI(γ) = T
∧

vI(γ) = F) Inductive hypothesis

3 vI(β) = T
∨

vI(β) = F BIV

4 vI(γ) = T
∨

vI(γ) = F BIV

5 ¬vI(β) = T
∨
¬vI(β) = F 1 De Morgan’s

6 ¬vI(γ) = T
∨
¬vI(γ) = F 2 De Morgan’s

7 vI(β) = T Assumption

8 vI(γ) = T Assumption

9 ¬¬vI(γ) = T 8 Double Negation

10 ¬vI(γ) = F 6 9 Disjunctive Syllogism

11 ¬¬vI(β) = T 7 Double Negation

12 ¬vI(β) = F 5 11 Disjunctive Syllogism

13 ¬vI(β ∧ γ) = F 10 12 SR-∧

14 ¬(vI(β ∧ γ) = T
∧

vI(β ∧ γ) = F) 13 Negated Conjunction

15 vI(γ) = F Assumption

16 ¬¬vI(γ) = F 15 Double Negation

17 ¬vI(γ) = T 6 16 Disjunctive Syllogism

18 ¬vI(β ∧ γ) = T 17 SR-∧

19 ¬(vI(β ∧ γ) = T
∧

vI(β ∧ γ) = F) 18 Negated Conjunction

20 ¬(vI(β ∧ γ) = T
∧

vI(β ∧ γ) = F) 4 8-14 15-19
∨

E

21 vI(β) = F Assumption

22 ¬¬vI(β) = F 21 Double Negation

23 ¬vI(β) = T 5 22 Disjunctive Syllogism

24 ¬vI(β ∧ γ) = T 23 SR-∧

25 ¬(vI(β ∧ γ) = T
∧

vI(β ∧ γ) = F) 24 Negated Conjunction

26 ¬(vI(β ∧ γ) = T
∧

vI(β ∧ γ) = F) 3 7-20 21-25
∨

E

Case 3. α is β ∨ γ.

Case 4. α is β ⊃ γ.

Case 5. α is β ≡ γ.27

27The reader might notice that the use of semantical rules in these derivations requires their statement as biconditionals. For
example, in the proof of Case 3, we appeal in step 13 to the contrapositive of the claim that if β ∧ γ is false, then β is false.
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So we have shown that given the assumption that sentences with fewer than n operators have no more
than one truth-value, any sentence with n operators, no matter how it is formed, has no more than one truth-
value. And since all sentences with 0 operators have no more than one truth-value, we can conclude that no
matter how complex a sentence, it must have no more than one truth-value. Combining Truth-Functionality
with Bivalence, we get the result that all sentences of SL have exactly one truth-value when interpreted
through the semantical machinery of SI.

It was noted in Section 2 that the operators as interpreted in SI are truth-functional. The proof of
Truth-Functionality establishes this point. If one begins with a sentence or two sentences having a single
truth-value, the sentence resulting from their combination by way of a connective will have only a single
truth-value.

2.3.3 Semantical Entailment

The relation of semantical entailment holds between a set of sentences and a single sentence.28 The set
of sentences {γ1, · · · , γn} semantically entails a sentence α if and only if on all interpretations I on which
vI(γ1)=T, and . . . and vI(γn)=T, vI(α) is also T. We symbolize semantical entailment using the subscripted
double-turnstyle ‘�S I’ between {γ1, · · · , γn} and α: {γ1 . . . γn} �S I α.29

Semantical Entailment. {γ1 . . . γn} �S I α if and only if for all interpretations I, if vI(γ1)=T, and . . .
and vI(γn)=T, then vI(α) =T

One typically proves that a semantical entailment holds by assuming for an arbitrary interpretation I
that the value given by vI to each γi is T and then using the semantical rules or their consequences to show
that the value of α is T as well. Suppose, for example, that vI(α) = T and vI(α ⊃ β) = T. By Truth-
Functionality, it is not the case that vI(α) = T and vI(α) = F. Therefore, it is not the case that vI(α) = F. By
SR-⊃, vI(α) = F or vI(α) = T. Then by Disjunctive Syllogism, vI(α) = T.

Semantical proof that: α, α ⊃ β �S I β

1 vI(α) = T Assumption

2 vI(α ⊃ β) = T Assumption

3 ¬(vI(α) = T
∧

vI(α) = F) TF

4 ¬vI(α) = T
∨
¬vI(α) = F 3 De Morgan’s

5 ¬¬vI(α) = T 1 Double Negation

6 ¬vI(α) = F 4 5 Disjunctive Syllogism

7 vI(α ⊃ β) = T→ (vI(α) = F
∨

vI(β) = T) SR-⊃

8 vI(α) = F
∨

vI(β) = T 2 7 Modus Ponens

9 vI(β) = T 6 8 Disjunctive Syllogism

28This technical notion must be distinguished from more vague, intuitive notions of entailment, which may be stronger or weaker
than semantical entailment.

29The subscript indicates the semantical system SI. The subscript will be dispensed with in contexts where it is clear which
semantical system is intended.
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2.3.4 Semantical Equivalence

Two sentences α and β are semantically equivalent just in case they have the same truth-value on all inter-
pretations.30

Semantical Equivalence. α is semantically equivalent to β if and only if for all interpretations I, vI(α) =

vI(β).

The relation of semantical equivalence holds for sentences α and β just in case {α} �SI β and {β} �SI α.
Suppose that {α} �SI β and {β} �SI α. Then any interpretation I that assigns α the value T assigns β the value
T. Further, any interpretation I that assigns β the value T assigns α the value T. So on any interpretation I,
vI(α) = T if and only if vI(β) = T. By Truth-Functionality, it follows that on any interpretation I, vI(α) = F
if and only if vI(β) = F. So given that {α} �SI β and {β} �SI α, on any interpretation, α and β have the same
truth-value, in which case they are semantically equivalent.

Exercise. Prove the converse.

2.3.5 Validity

The limiting case of semantical entailment, Γ �S I α, is that in which Γ contains no sentences at all. The set
of sentences is then ∅, the empty set. If ∅ � α, then on all interpretations I, α is true. In that case, we say that
α is valid in SI (or SI-valid).31 If α is SI-valid, we write ‘�S I α.’

Validity. �S I α if and only if on all interpretations I, vI(α) = T.

For example, ‘A ∨ ∼A’ is valid in SI. Consider an arbitrary interpretation I. By Bivalence, vI(α) =

T
∨

vI(α) = F. Now suppose vI(α) = T. It follows from SR-∨ that vI(α ∨ ∼α) = T. And suppose that
vI(α) = F. In that case, by SR-∼ it follows that vI(∼α) = T. Therefore, by SR-∨, vI(α ∨ ∼α) = T. So in
either case we have the result that α∨∼α has the value T in I, and since the choice of I is arbitrary, the result
holds for all interpretations.

Semantical proof that: �S I α ∨ ∼α

1 vI(α) = T
∨

vI(α) = F BV

2 vI(α) = T Assumption

3 vI(α) = T→ vI(α ∨ ∼α) = T SR-∨

4 vI(α ∨ ∼α) = T 2 3→ E

5 vI(α) = F Assumption

6 vI(α) = F→ vI(∼α) = T SR-∼

7 vI(∼α) = T 5 6→ E

8 vI(∼α) = T→ vI(α ∨ ∼α) = T SR-∨

9 vI(α ∨ ∼α) = T 7 8→ E

10 vI(α ∨ ∼α) = T 1 2-4 5-9
∨

E

30There is no generally accepted meta-logical symbol to denote semantic equivalence.
31Such a sentence of Sentential Logic is often referred to as a “tautology.” It is also called a “logical truth,” though that notion

seems to be more generic than that of a tautology, as sentences of predicate logic and modal logic are also called logical truths.
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The relation of semantical entailment and the property of validity, if they hold, can be established using
truth-tables. In effect, the semantical reasoning we have been using can be mapped onto the construction of
a truth-table.

α ∼α α ∨ ∼α

T T
F T T

Steps 1 and 2 of the meta-logical deduction correspond to the placing of ‘T’ and ‘F’ respectively in the
two rows under ‘α.’ Step 4 corresponds to the placing of the ‘T’ under ‘α ∨ ∼α’ in the first row. Step 7
corresponds to the placing of ‘T’ under ‘∼α’ in the second row. Step 9 corresponds to the placing of ‘T’
under ‘α ∨ ∼α’ in the second row. (There is no need to calculate a value for ∼α in the first row.)

2.3.6 Semantical Consistency

We may define a notion of semantical consistency, which applies to a set of sentences Γ. Specifically, Γ is
semantically consistent (s-consistent) if and only if there is an interpretation I such that all the sentences of
Γ have the value T on I. A sentence which is not s-consistent is s-inconsistent. A set Γ is s-inconsistent if
and only if there is no interpretation on which all the sentences of Γ have the value T, which by Bivalence
is equivalent to saying that on all interpretations, at least one member of Γ has the value F.

Semantical Consistency. Γ is semantically consistent if and only if there is an interpretation I such that
for all γi in Γ, vI(γ1)=T, and . . . and vI(γn)=T; Γ is semantically inconsistent if and only if there is no
interpretation I such that for all γi in Γ, vI(γ1)=T, and . . . and vI(γn)=T.

For example, the set of sentences {A, A ⊃ B, B} is s-consistent, while the set {A, A ⊃ B,∼B} is s-inconsistent.
There is a close relation between s-inconsistency and semantical entailment. Let Γ∪∼α be the union of

the set of sentences Γ and the sentence ∼α.32 The following meta-theorem may now be proved.

Γ �S I α if and only if Γ ∪ ∼α is s-inconsistent.

Γ �S I α if and only if for any interpretation I, and any γi in Γ, if vI(γi) = T then vI(α) = T. By Truth-
Functionality, this holds if and only if, if vI(γi) = T then ¬vI(α) = F. By SR-∼, this holds if and only if, if
vI(γi) = T, then ¬vI(∼α) = T. Finally, this result holds if and only if there is no interpretation I such that
all the members γi of Γ have the value T and ∼α has the value T, i.e. Γ ∪ ∼α is s-inconsistent.

3 Natural Deduction in Sentential Logic

As was noted in Module 1, Frederick Fitch devised a set of “natural deduction” rules that show which
sentences “follow from” which sets of sentences. These rules are purely syntactical, in the sense that they
do not rely (at least explicitly) on any interpretation of the sentences to which they are applied. The end-
result of the use of the rules is a derivation of a conclusion from zero or more premises. We will begin
by using a fairly restrictive set Introduction and Elimination rules which produce a derivation system we
call ‘SD’ (for “sentential derivations”), following Bergmann, Moore, and Nelson in The Logic Book. The
system SD in The Logic Book does not contain rules for falsum, which is not an expression in their language
of sentential logic. For each operator other than falsum, there will be one rule for its “introduction” and one
for its “elimination.”33 We will allow the use of two additional, derived, rules for falsum.

32The union of two sets is the set consisting of all members of both sets.
33Gerhard Gentzen, who originally formulated introduction/elimination rules, found philosophical significance in the symmetry

between introduction and elimination rules.
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The first step in any Fitch-style proof is setting down one or more assumptions. A vertical line known as
the scope line is drawn next to the assumption(s) and a horizontal line is drawn below the final assumption.

γ1 Assumption
...

γn Assumption

Certain rules allow the assumption to be discharged. When an assumption is discharged, the scope
line is ended. An assumption that has not, at a given point in the derivation, been discharged is called
an undischarged assumption. A sentence α to the right of a scope line is said to be in the scope of the
assumption (which may be α itself) made at that scope line. A sentence in the scope of an assumption and
not in the scope of any further assumption to its right is said to be in its immediate scope.

3.1 Reiteration

The rule of Reiteration (R) allows any sentence already arrived at in a derivation to be repeated at any step
below it in its immediate scope or in the scope of an assumption made in its immediate scope. We shall
require that the rest of the rules be used entirely within a single scope line. Thus Reiteration may have to
be applied once or more in order to allow a rule to be used. Although this restriction is of no real value in
sentential logic, it is very helpful for derivations in modal logic, which make use of special modal scope
lines.

Reiteration

α Already Derived
...

α R

β Assumption
...

α R

This schematic representation of the rule incorporates both kinds of permissible reiterations. One need not
make use of both kinds in all derivations.

3.2 Negation Rules

The rules for introducing and eliminating negation operators (∼ I and ∼ E, respectively) are quite similar to
each other. In each case, an assumption is made and a pair of sentences β and ∼β is derived (in either order)
within the immediate scope of that assumption. At that point, the scope line ends and a negation sign is
either added to or removed from the assumption (depending on whether the introduction or elimination rule
is being used).
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Negation Introduction

α Assumption
...

β
...

∼β

∼α ∼ I

Negation Elimination

∼α Assumption
...

β
...

∼β

α ∼ E

3.3 Conjunction Rules

The conjunction rules are perhaps the most straightforward of all. A conjunction can be introduced by
conjoining two sentences (in either order) in the same scope line (by ∧ I).

Conjunction Introduction

α Already Derived
...

β Already Derived
...

α ∧ β ∧ I
...

β ∧ α ∧ I

A conjunction can be eliminated (using ∧ E) by writing down one of its conjuncts in the same scope
line. (Note that one need not write down both conjuncts; the two possible uses of the rule are compressed in
a single schematic representation.)
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Conjunction Elimination

α ∧ β Already Derived
...

α ∧ E
...

β ∧ E

3.4 Disjunction Rules

The rule for introducing a disjunction (∨ I) is very straightforward. One may prepend or append any sentence
as a disjunct to any given sentence. (As with conjunction, only one application of the rule need be made at
any one time.)

Disjunction Introduction

α Already Derived
...

α ∨ β ∨ I
...

β ∨ α ∨ I

The rule for eliminating a disjunction, also known as “simple dilemma” and as “constructive dilemma”
(∨ E), is the most complicated of all the rules. If a disjunction occurs in a derivation, and one derives in the
same scope line a single sentence by assuming each of the disjuncts, one may discharge the two assumptions
and write down the derived sentence.

Disjunction Elimination

α ∨ β Already Derived

α Assumption
...

γ

β Assumption
...

γ

γ ∨ E
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3.5 Material Conditional Rules

The rule for introducing a material conditional (⊃ I) is moderately complex. One makes an assumption,
derives a sentence from that assumption in the same scope line, discharges the assumption, and writes down
a material conditional with the assumption as the antecedent and the derived sentence as the consequent.

Material Conditional Introduction

α Assumption
...

β

α ⊃ β ⊃ I

The elimination rule for the material conditional (⊃ E), widely known as “modus ponens,” is quite
simple. If one has derived a conditional and has also derived its antecedent within the same scope line, then
one may write down the consequent of the conditional.

Material Conditional Elimination

α Already Derived
...

α ⊃ β
...

β ⊃ E

It does not matter whether the conditional or its antecedent occurs first.

3.6 Material Biconditional Rules

Because the material biconditional is semantically equivalent to the conjunction of two material conditionals,
the operator is introduced (using ≡ I) by using twice the same procedure that introduces conditionals. The
sentence on one side is derived in the scope of the assumption of the sentence on the other side, and vice-
versa.

Material Biconditional Introduction

α Assumption
...

β

β Assumption
...

α

α ≡ β ≡ I
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The elimination rule for the material biconditional (≡ E) likewise reflects the operator’s relation to the
conditional. If a biconditional is present and either sentence making it up is also present, then the other
sentence can be written down.

Material Biconditional Elimination

α Already Derived
...

α ≡ β
...

β ≡ E

β Already Derived
...

α ≡ β
...

α ≡ E

It does not matter whether the biconditional or its component sentence occurs first.

3.7 Falsum Rules

The introduction rule for falsum (⊥ I) allows one to write down ‘⊥’ when both α and ∼α (in either order)
occur on the same scope line.

Falsum Introduction

α Already Derived
...

∼α Already Derived

⊥ ⊥ I

Falsum is “eliminated” (using ⊥ E) in the sense that when it occurs, any sentence whatsoever can be written
down in the current scope line.

Falsum Elimination

⊥ Already Derived

α ⊥ E
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3.8 Derived Rules Using Falsum

Here we introducte two derived rules which are very useful in Predicate Logic derivations. Derived rules
are rules that could always be dispensed with in favor of the primitive rules that have just been stated.

Negation Introduction-⊥

α Assumption
...

⊥

∼α ∼ I-⊥

Negation Elimination-⊥

∼α Assumption
...

⊥

α ∼ E-⊥

We can show that the derived rules hold by providing a template for generating the same results without
their use. The illustration will be made for ∼ I-⊥ only. Suppose that one can derive ⊥ from assumption α.
We show that one can subsequently discharge the assumption and write ∼α.

α Assumption
...

⊥ Derived from α

β ⊥ E

∼β ⊥ E

∼α ∼ I

3.9 Derivations of Schemata

The derivation rules are set up to allow derivations using sentences of SL. We will have occasion to use
derivations whose steps contain instead meta-logical schemata of SL sentences. For example, the expression
‘α∧β’ is not a sentence of SL, but it shows schematically the form of SL sentences. Derivations of schemata
will be given using the same annotations as for derivations using SL sentences.

3.10 Derivational Properties and Relations

As with the semantical system SI, the derivational system SD has various properties that are the subject of
meta-theorems. The properties corresponding to Bivalence and Truth-Functionality cannot be understood
until we have defined the relations and properties corresponding to semantical entailment (derivability) and
validity (theoremhood). So we shall turn to them next.
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3.10.1 Derivability

The derivability relation, {γ1, · · · , γn} `S D α, holds between a set of sentences {γ1, · · · , γn} and a sentence α
when each member of the set is an assumption not in the scope of any other assumption, and α is a step in
the immediate scope of those assumption(s). The derivability relation is the relation of logical consequence
in the derivational system.

3.10.2 Derivational Equivalence

Two sentences α and β are derivationally equivalent if and only if {α} `S D β and {β} `S D α. Note that
derivational equivalence cannot be defined in the same manner as was semantical equivalence (having the
same truth-value on all interpretations), since the sentences are not interpreted by the derivational system.

3.10.3 Theoremhood

A sentence α derived from no undischarged assumptions is said to be a theorem of SD. We signify the
theoremhood of α by writing ‘`S D α.’ We will here give derivations that prove the theoremhood of the three
schemata for the axiomatic system SA described below in 5.1.

Proof that `S D α ⊃ (β ⊃ α)

1 α Assumption

2 β Assumption

3 α 1 R

4 β ⊃ α 2-3 ⊃ I

5 α ⊃ (β ⊃ α) 1-4 ⊃ I

Proof that `S D (α ⊃ (β ⊃ γ)) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))

1 α ⊃ (β ⊃ γ) Assumption

2 α ⊃ β Assumption

3 α ⊃ (β ⊃ γ) 1 R

4 α Assumption

5 α ⊃ (β ⊃ γ) 3 R

6 β ⊃ γ 4 5 ⊃ E

7 α ⊃ β 2 R

8 β 4 7 ⊃ E

9 γ 6 8 ⊃ E

10 α ⊃ γ 4-9 ⊃ I

11 (α ⊃ β) ⊃ (α ⊃ γ) 2-10 ⊃ I

12 (α ⊃ (β ⊃ γ)) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ)) 1-11 ⊃ I
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Proof that `S D (∼β ⊃ ∼α) ⊃ ((∼β ⊃ α) ⊃ B)

1 ∼β ⊃ ∼α Assumption

2 ∼β ⊃ α Assumption

3 ∼β ⊃ ∼α 1 R

4 ∼β 1 Assumption

5 ∼β ⊃ α 2 R

6 ∼β ⊃ ∼α 3 R

7 ∼α 4 5 ⊃ E

8 α 4 6 ⊃ E

9 β 3-8 ∼ E

10 (∼β ⊃ α) ⊃ β 2-9 ⊃ I

11 (∼β ⊃ ∼α) ⊃ ((∼β ⊃ α) ⊃ β) 1-10 ⊃ I

3.11 Excluded Middle

Corresponding to the semantical property of Bivalence described in Section 2.3.1 above is a sentence-
schema known as the Excluded Middle, α ∨ ∼α is a theorem of SD. The derivational system does not
have a way of expressing falsehood directly. Intuitively, we take every step of a derivation to be an assertion
of truth. Falsehood can, however, be expressed indirectly. To assert ∼α is, from the point of view of SI,
tantamount to asserting that α is false. So the semantical property of sentences, that each one is either true
or false, is expressed in SL sentences of the form α ∨ ∼α. It may be derived as follows.

1 ∼(α ∨ ∼α) Assumption

2 α Assumption

3 α ∨ ∼α 2 ∨ I

4 ∼(α ∨ ∼α) 1 R

5 ∼α 2-4 ∼ I

6 α ∨ ∼α 5 ∨ I

7 α ∨ ∼α 1-6 ∼ E

3.12 Non-Contradiction

The counterpart to Truth-Functionality described in Section 2.3.2 above is the sentence-schema known as
Non-Contradiction, ∼(α ∧ ∼α), which is a theorem-schema of SD. Once again, reference to falsehood is
made through negation. From the standpoint of SI, sentences of this sort assert that it is not the case that α
and ∼α are both true, in which case α is not both true and false.
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1 α ∧ ∼α Assumption

2 α 1 ∧ E

3 ∼α 1 ∧ E

4 ∼(α ∧ ∼α) 1-3 ∼ I

The reader will not fail to notice how easy these derivations are compared with the semantical derivations
made in the previous section.

3.13 Derivational Consistency

Corresponding to Semantical Consistency described in Section 2.3.6 above is the notion of derivational
consistency. A set of sentences Γ of SL is derivationally consistent (d-consistent), if and only if it is not the
case that there is a sentence α of SL such that Γ `S D α and Γ `S D ∼α. Any set of sentences which is not
d-consistent is d-inconsistent. We can prove the following meta-theorem:

Γ `S D α if and only if Γ ∪ ∼α is d-inconsistent.

Suppose Γ `S D α. Then there is a derivation of α from the members of Γ as assumptions. Adding an
assumption does not affect the proof, so Γ∪∼α `S D α. By the rule of Reiteration, Γ∪∼α `S D ∼α. Therefore,
Γ ∪ ∼α is d-inconsistent.

This reasoning can be illustrated by the following derivation-schemata. First, suppose that Γ `S D α.

1 γ1 Assumption

2 . . .

3 γn Assumption

4 . . .

5 α By Hypothesis

We add ∼α as a further assumption.

1 γ1 Assumption

2 . . .

3 γn Assumption

4 ∼α Assumption

5 . . .

6 α By Hypothesis

We derive ∼α from Γ ∪ ∼α.
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1 γ1 Assumption

2 . . .

3 γn Assumption

4 ∼α Assumption

5 . . .

6 ∼α Reiteration

Now suppose Γ∪∼α is d-inconsistent. Suppose further that the members of Γ are the outermost assump-
tions in a derivation. Assume ∼α and reiterate all the members of Γ. Because Γ ∪ ∼α is d-inconsistent, we
may then derive a pair of sentences β and ∼β. The assumption of ∼α may be discharged and α written down
as the last step in the derivation, in which case Γ `S D α.

1 γ1 Assumption

2 . . .

3 γn Assumption

4 ∼α Assumption

5 γ1 Reiteration

6 . . .

7 γn Reiteration

8 . . .

9 β From d-inconsistency

10 . . .

11 ∼β From d-inconsistency Γ ∪ ∼α

12 α ∼ E

The reader will note that there is a structural similarity between this result and the corresponding result
for semantical inconsistency.

4 Soundness and Completeness

Thus far, our meta-logical results have been confined to either the semantical system SI or the derivational
system SD. There are further meta-theorems which concern the relation between the two systems. The
first is the soundness of SD. A derivational system is sound relative to a semantical system just in case
every relation of derivability is a relation of semantical entailment. With respect to our present systems,
if {γ1, . . . , γn} `S D α, then {γ1, · · · , γn} �S I α. A derivational system is complete relative to a semantical
system just in case all semantical entailments are derivable. Applied to Sentential Logic, this means that
if {γ1, · · · , γn} �S I α, then {γ1, . . . , γn} `S D α. Because theoremhood and validity are degenerate cases of
derivability and semantic entailment, respectively, we can define more restricted (or “weaker”) senses of
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soundness and completeness. If SD is sound relative to SI, then `S D α, then �S I α. If SD is complete relative
to SI, then if �S I α, then `S D α.

4.1 Soundness

We may think of the relation of semantical entailment as one which excludes the possibility of a set of
sentences being true and its consequence being false. If a set of derivation rules is such that all derivations
are semantical entailments, then the derivation rules do not allow the inference of a false consequence from
true premises. This accords with an intuitive sense in which the system of derivation rules is sound.

The soundness of SD relative to SI will not be proved here, but we can give an indication of how the
proof goes. The main work of the proof is to establish a lemma: at any point in a derivation, if all the
undischarged assumptions {γ1, . . . , γn} up to that point are true on an interpretation, then the last formula α
is true on that interpretation as well.34 The lemma applies to the limiting case where α is in the immediate
scope of the outermost assumptions {γ1, . . . , γn}, in which case {γ1, . . . , γn} `SD α.

The lemma is proved by mathematical induction on the length of the derivation. Suppose n steps of a
derivation have been constructed. The proof shows that if the sentences needed for the application of the rule
at the nth step are true given that the undischarged assumptions are true, then the result of the application
of the rule is true as well. As an illustration, consider Conjunction Elimination. Suppose that {γ1, . . . , γn}

are all the undischarged assumptions, and that α ∧ β is a sentence that lies in their scope. By the inductive
hypothesis, if {γ1, . . . , γn} are all true, then α ∧ β is true. But we have shown already that if this is the case,
then α is true and β is true. So, if {γ1, . . . , γn} are all true, so are α and β. Reasoning for the rules involving
assumptions is more complicated and will not be described here.

Another way to look at soundness is by noticing the parallel between the derivational rules and the
semantical reasoning used to establish semantical entailment. Here we assert without proof that each of the
rules of SD can be mapped onto a corresponding argument that uses only semantical rules. For example,
the rule of Conjunction Elimination corresponds to the rule that if the value of a conjunction is T, then the
values of each of its conjuncts are T.

Conjunction Elimination

α ∧ β Already Derived

. . .

α ∧ E

Semantical proof that: α ∧ β � S Iα

vI(α ∧ β) = T Assumption

. . .

vI(α ∧ β) = T→ vI(α) = T SR-∧

vI(α) = T Modus Ponens

We can think of the derivational rule as mirroring the use of semantical rules, but in a “cleaner” or “less-
cluttered” way. The derivational system dispenses with references to truth-values because it implicitly takes
all the truth-values to be T. Falsehood of a sentence α is displayed by the using its negation, ∼α. Here is
another example to illustrate the point.

34A lemma is is a principal result used in proving a meta-theorem.
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Negation Introduction

α Assumption

. . .

β

. . .

∼β

∼α ∼ I

Semantical proof of the Soundness of ∼ Introduction

vI(α) = T Assumption

. . .

vI(β) = T Semantical Reasoning

. . .

vI(∼ β) = T Semantical Reasoning

vI(β) = F SR-∼

vI(β) = T
∧

vI(β) = F
∧

I

¬(vI(β) = T
∧

vI(β) = F) TF

¬vI(α) = T ¬ I

vI(α) = F BV

vI(∼α) = T SR-∼

We will exploit the parallelism between semantical rules and derivational rules when we construct
derivational rules for systems of modal logic.

4.2 Completeness

If we think of the relation of semantical entailment in SI as exhaustive of the logical consequences holding
among sentences of SL, then the derivational system is, intuitively, complete if it can reproduce all those
consequences. Proofs of completeness are a good deal more difficult than proofs of soundness.

There are many strategies for completeness proofs. The most intuitively satisfying proofs are con-
structive, showing how for any semantical entailment a derivation can be constructed. These proofs are
complicated in detail, and will be discussed further below.

Another proof-strategy is non-constructive. In such proofs, all that is shown is that for every semantical
entailment there must be a derivation, but what that derivation looks like is completely unspecified. This
type of proof was first advanced by Leon Henkin, and so it has come to be known as the “Henkin-style”
proof-strategy for completeness.35 One advantage of the Henkin approach is that it is easily adapted to
modal logics.

35“The Completeness of the First-Order Functional Calculus,” Journal of Symbolic Logic Vol. 14 (1949), pp. 42-50.
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Here we will only sketch the strategy for proving completeness in the manner of Henkin. The key move
is to show how to begin with a consistent set of sentences and then build a “maximal” d-consistent set of
sentences Γ′, of which the original set is a subset.36 “Lindenbaum’s Lemma,” which states that every d-
consistent set is a subset of a maximal d-consistent set is then proved, using the specific characteristics of
SD derivations, which determine what is and what is not a member of a maximal d-consistent set.

It is next shown that there is an interpretation according to which a given sentence is a member of Γ′

if and only if that sentence has the value T on that interpretation.37 This is done by using a special recipe
for constructing an interpretation which guarantees that all and only the members of Γ′ have the value T,
and hence that Γ′ is s-consistent. The recipe is easy: assign to all the sentence letters in Γ′ the value T and
to all the sentence letters not in Γ′ the value F. It is then proved by mathematical induction that on such an
interpretation, all and only members of Γ′ have the value T. This proof also relies on the specific features of
SD derivations, which determine what is and what is not a member of Γ′. Finally, if Γ′ is such that there is
an interpretation on which all its sentences have the value T, then all its subsets have the value T as well, by
simple reasoning in predicate logic.

We sketch the proof-strategy in the form of a meta-logical derivation.

Sketch of Proof that: If Γ is d-consistent, then Γ is s-consistent.

1 Γ is d-consistent Assumption

2 Γ ⊆ a maximal d-consistent set Γ′ 1 “Lindenbaum’s Lemma”

3 (ΣI)(Πα)(α ∈ Γ′ ↔ vI(α) = T ) By Mathematical Induction

4 Γ is s-consistent 3 Definition of ‘s-consistent’

5 Γ is d-consistent→ Γ is s-consistent 1-4→ I

Now we may apply this strategy to a set Γ∪∼α, which we assume to be d-consistent. By Lindenbaum’s
Lemma, it is a subset of a maximal d-consistent set Γ′. We apply the interpretation that makes all the
sentences in Γ′ have the value T, in which case all the sentences in Γ ∪ ∼α have the value T; that is, Γ ∪ ∼α

is s-consistent.

Sketch of Proof that: If Γ �S I α, then Γ `S D α.

1 Γ �S I α Assumption

2 Γ �S I α→ Γ ∪ ∼α is s-inconsistent Proved in 2.3.6

3 Γ ∪ ∼α is s-inconsistent 1 2→ E

4 Γ ∪ ∼α is d-consistent→ Γ ∪ ∼α is s-consistent Instance of above result

5 Γ ∪ ∼α is d-inconsistent 3 4 Modus Tollens

6 Γ ∪ ∼α is d-inconsistent→ Γ `S D α Proved in 3.13

7 Γ `S D α 5 6→ E

This general strategy can be adapted to any pair of systems for which d-inconsistency and s-inconsistency
can be defined in the way it has been defined here. This will include the modal logics that will be studied

36We use ‘⊆’ to denote the subset relation: α ⊆ β if and only if every member of α is a member of β.
37For arbitrary sentences α and β, we write ‘α ∈ β’ to indicate the membership of α in β.
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in later modules. The means of implementing the strategy in the proof of Lindenbaum’s Lemma and of the
equivalence between the s-consistency and d-consistency of maximal will depend on the specific character
of the systems studied.

The un-intuitive character of this mode of proof is apparent. A more intuitively satisfying approach
would be to exploit the striking parallelism between semantical reasoning and derivations, as was done with
soundness. However, there is a difficulty in so doing. It is not the case that any semantical derivation can
be converted into a derivation in SD by making the appropriate conversion from sentences having the value
F to the negation of those sentences. Here is an earlier example of semantical reasoning, followed by a
corresponding derivation.

Semantical proof that: �S I α ∨ ∼α

1 vI(α) = T
∨

vI(α) = F BV

2 vI(α) = T Assumption

3 vI(α) = T→ vI(α ∨ ∼α) = T SR-∨

4 vI(α ∨ ∼α) = T 2 3→ I

5 vI(α) = F Assumption

6 vI(α) = F→ vI(∼α) = T SR-∼

7 vI(∼α) = T 5 6→ E

8 vI(∼α) = T→ vI(α ∨ ∼α) = T SR-∨

9 vI(α ∨ ∼α) = T 7 8→ I

10 vI(α ∨ ∼α) = T 1 2-4 5-9
∨

E

There is nothing in the derivational system that corresponds to the assertion of the rule of Bivalence.
The closest we can come would be the formula α ∨ ∼α, which is the very thing we are trying to derive. The
derivation of that schema in SD proceeds as follows.

Proof that: `S D α ∨ ∼α

1 ∼(α ∨ ∼α) Assumption

2 α Assumption

3 α ∨ ∼α 2 ∨ I

4 ∼(α ∨ ∼α) 1 R

5 ∼α 2-4 ∼ I

6 α ∨ ∼α 5 ∨ I

7 α ∨ ∼α 1-6 ∼ E

Now this derivation can be seen as a conversion of a meta-logical semantical derivation.
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Another semantical proof that: �S I α ∨ ∼α

1 ¬(vI(α ∨ ∼α) = T) Assumption

2 vI(α) = T Assumption

3 vI(α) = T→ vI(α ∨ ∼α) = T SR-∨

4 vI(α ∨ ∼α) = T 2 3→ E

5 ¬(vI(α ∨ ∼α) = T) 1 Reiteration

6 ¬vI(α) = T 2-5 ¬ I

7 vI(α) = T
∨

vI(α) = F BV

8 vI(α) = F 6 7 Disjunctive Syllogism

9 vI(α) = F→ vI(∼α) = T SR-∼

10 vI(∼α) = T 8 9→ E

11 vI(∼α) = T→ vI(α ∨ ∼α) = T SR-∨

12 vI(α ∨ ∼α) = T 10 11→ E

13 vI(α ∨ ∼α) = T 1-12 ¬ E

To try to show completeness by exploiting the parallism between the two pieces of reasoning, we would
have to show how to set up all our semantical derivations in a way that would allow them to be converted
to derivations in SD. There may be a way of making the derivations proving semantical entailment conform
precisely to how a truth-table is constructed. This is a task which will not be undertaken here.

5 Axiomatic Formulation of Sentential Logic

The earliest formulations of sentential logic were axiomatic. In an axiom system, there is a set of sentences
called axioms and a set of rules of inference are specified. A theorem is defined as an axiom or what follows
from axioms by way of rules of inference. The primary aim of axiomatic systems is to generate an acceptable
list of theorems.

5.1 The Axiom System SA

The following is one among many possible axiomatizations of Sentential Logic. This version (which we
will call “SA”) describes an axiom system using axiom schemata. Rather than specifying axioms, the system
shows through the schemata the form that the axioms have. The axioms themselves are sentences of SL with
the displayed form. Since there are infinitely many sentences of SL, there are infinitely many axioms in this
system.38

Axioms

SA 1 `S A α ⊃ (β ⊃ α)

38Alternatively, one could specify three axioms (for this formulation) using sentences of SL and add a rule of “uniform substitu-
tion” which generates theorems by substituting other sentences for those in the axioms.
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SA 2 `S A (α ⊃ (β ⊃ γ)) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))

SA 3 `S A (∼β ⊃ ∼α) ⊃ ((∼β ⊃ α) ⊃ β)

Rule of Inference

Modus Ponens From `S A α and `S A α ⊃ β, infer `S A β.

None of the axioms of SA contains any of the operators ‘∧,’ ‘∨,’ or ‘≡.’ These operators may be defined
contextually.

α ∧ β =Df ∼(α ⊃ ∼β)

α ∨ β =Df ∼α ⊃ β

α ≡ β =Df ∼((α ⊃ β) ⊃ ∼(β ⊃ α))

Theorems of SA may be converted to definitionally equivalent theorems by making the appropriate
substitutions. For example, `S A ∼α ⊃ ∼α. Based on the definition (and Double Negation, which holds in
SA), we may assert that `S A α ∨ ∼α.

The following is an example of an axiomatic proof that `S A α ⊃ α. (It is easily adapted to prove
`S A ∼α ⊃ ∼α.) The theorem is very simple, yet the proof is quite cumbersome.

Axiomatic Proof that: �S A α ⊃ α

1 (α ⊃ ((α ⊃ α) ⊃ α)) ⊃ ((α ⊃ (α ⊃ α)) ⊃ (α ⊃ α)) SA 2

2 α ⊃ ((α ⊃ α) ⊃ α) SA 1

3 (α ⊃ (α ⊃ α)) ⊃ (α ⊃ α) 1 2 Modus Ponens

4 α ⊃ (α ⊃ α) SA 1

5 α ⊃ α 3 4 Modus Ponens

The chief advantage of the axiomatic formulation of a system for SL is that it facilitates proofs of
soundness, completeness, and other meta-logical properties and relations. Here, we will use the axiom
system to illustrate the way in which semantical reasoning and derivations work in the context of Sentential
Logic.

5.2 SA and SI

The axiom system SA can be proved to be sound and complete relative to the semantical system SI. Here we
will only prove the weak form of soundness, that all theorems of SA are valid in SI.

The proof is by mathematical induction on the number n of steps in the proof of the theoremhood of an
arbitrary formula α.

Basis Step: n = 1.
If there is only one step in the proof of the theoremhood of α, then α is an axiom of SA. So we will prove

that any axiom schema of SA has as instances only sentences valid in SI.

33



Semantical proof of Validity of SA 1: �S A α ⊃ (β ⊃ α)

1 vI(α) = T
∨

vI(α) = F BV

2 vI(α) = T Assumption

3 vI(α) = T→ vI(β ⊃ α) = T SR-⊃

4 vI(β ⊃ α) = T 2 3→ E

5 vI(β ⊃ α) = T→ vI(α ⊃ (β ⊃ α)) = T SR-⊃

6 vI(α ⊃ (β ⊃ α)) = T 4 5→ E

7 vI(α) = F Assumption

8 vI(α) = F→ vI(α ⊃ (β ⊃ α)) = T SR-⊃

9 vI(α ⊃ (β ⊃ α)) = T 7 8→ E

10 vI(α ⊃ (β ⊃ α)) = T 1 2-6 7-9
∨

E

The moves made in the proof can be illustrated through truth-tables. Only the values needed to get the
result are listed.

α β ⊃ α α ⊃ (β ⊃ α)
T T T

α α ⊃ (β ⊃ α)
F T
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Semantical proof of Validity of SA 2: �S A (α ⊃ (β ⊃ γ) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))

1 vI(α) = T
∨

vI(α) = F BV

2 vI(α) = T Assumption

3 vI(γ) = T
∨

vI(γ) = F BV

4 vI(γ) = T Assumption

5 vI(α ⊃ γ) = T 4 SR-⊃

6 vI((α ⊃ β) ⊃ (α ⊃ γ)) = T 5 SR-⊃

7 vI((α ⊃ (β ⊃ γ)) ⊃ (α ⊃ β) ⊃ (α ⊃ γ)) = T 6 SR-⊃

8 vI(γ) = F Assumption

9 vI(β) = T
∨

vI(β) = F BV

10 vI(β) = T Assumption

11 vI(β ⊃ γ) = F 8 10 SR-⊃

12 vI(α ⊃ (β ⊃ γ)) = F 11 SR-⊃

13 vI((α ⊃ (β ⊃ γ)) ⊃ (α ⊃ (β ⊃ γ))) = T 12 SR-⊃

14 vI(β) = F Assumption

15 vI(α ⊃ β) = F 2 14 SR-⊃

16 vI((α ⊃ β) ⊃ (α ⊃ γ)) = T 15 SR-⊃

17 vI((α ⊃ (β ⊃ γ)) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))) = T 16 SR-⊃

18 vI((α ⊃ (β ⊃ γ)) ⊃ (α ⊃ β) ⊃ (α ⊃ γ) = T 9 10-13 14-17
∨

E

19 vI((α ⊃ (β ⊃ γ)) ⊃ (α ⊃ β) ⊃ (α ⊃ γ) = T 3 4-7 8-18
∨

E

20 vI(α) = F Assumption

21 vI(α ⊃ γ) = T 20 SR-⊃

22 vI((α ⊃ β) ⊃ (α ⊃ γ)) = T 21 SR-⊃

23 vI((α ⊃ (β ⊃ γ)) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))) = T 22 SR-⊃

24 vI((α ⊃ (β ⊃ γ)) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))) = T 1 2-19 20-23
∨

E

Again, we illustrate the moves in the proof using truth-tables.

α γ α ⊃ γ (α ⊃ β) ⊃ (α ⊃ γ) (α ⊃ (β ⊃ γ) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))
T T T T T

α β γ β ⊃ γ α ⊃ (β ⊃ γ) (α ⊃ (β ⊃ γ) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))
T T F F F T

α β α ⊃ β (α ⊃ β) ⊃ (α ⊃ γ) (α ⊃ (β ⊃ γ) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))
T F F T T
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α α ⊃ γ (α ⊃ β) ⊃ (α ⊃ γ) (α ⊃ (β ⊃ γ) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))
F T T T

Semantical proof of Validity of SA 3: �S A (∼β ⊃ ∼α) ⊃ ((∼β ⊃ α) ⊃ β)

1 vI(β) = T
∨

vI(β) = F BV

2 vI(β) = T Assumption

3 vI(((∼β ⊃ α) ⊃ β) = T 2 SR-⊃

4 vI((∼β ⊃ ∼α) ⊃ ((∼β ⊃ α) ⊃ β)) = T 3 SR-⊃

5 vI(β) = F Assumption

6 vI(∼β) = T 5 SR-∼

7 vI(α) = T
∨

vI(α) = F BV

8 vI(α) = T Assumption

9 vI(∼α) = F 8 SR-∼

10 vI(∼β ⊃ ∼α) = F 6 9 SR-⊃

11 vI((∼β ⊃ ∼α) ⊃ ((∼β ⊃ α) ⊃ β)) = T 10 SR-⊃

12 vI(α) = F Assumption

13 vI(∼β ⊃ α) = F 12 SR-⊃

14 vI((∼β ⊃ α) ⊃ β) = T 13 SR-⊃

15 vI((∼β ⊃ ∼α) ⊃ ((∼β ⊃ α) ⊃ β)) = T 14 SR-⊃

16 vI((∼β ⊃ ∼α) ⊃ ((∼β ⊃ α) ⊃ β)) = T 7 8-11 12-15
∨

E

17 vI((∼β ⊃ ∼α) ⊃ ((∼β ⊃ α) ⊃ β)) = T 1 2-4 5-16
∨

E

Again, the reasoning is illustrated with truth-tables.

β (∼β ⊃ α) ⊃ β (∼β ⊃ ∼α) ⊃ ((∼β ⊃ α) ⊃ β)
T T T

α β ∼α ∼β ∼β ⊃ ∼α (∼β ⊃ ∼α) ⊃ ((∼β ⊃ α) ⊃ β)
T F F T F T

α β ∼β ∼β ⊃ α (∼β ⊃ α) ⊃ β (∼β ⊃ ∼α) ⊃ ((∼β ⊃ α) ⊃ β)
F F T F T T

Inductive Hypothesis. Suppose that the sentences proved in all steps before n are valid. It will be
shown that the sentence produced by step n itself is valid.

Induction Step. Because we have only one inference rule, Modus Ponens, all that is required, given the
Inductive Hypothesis, is to show that if �S I α and �S I α ⊃ β, then �S I β. Suppose this is the case. Then α
has the value T on all interpretations, as does α ⊃ β. By SR-⊃, it follows by easy reasoning that β has the
value T on all interpretations, i.e., �S I α.

This completes the proof of the Induction Step, and we can assert that no matter what the length of the
proof of its theoremhood, if α is a theorem, then α is valid.
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5.3 SA and SD

Earlier, we derived all three axioms of SA as theorems of SD. So we can say that all axioms of SA are
theorems of SD. Further, the use of the Rule of Modus Ponens can be simulated in a derivation of the
following form. Given that ` α and ` α ⊃ β, α and α ⊃ β can be derived from no assumptions. We can then
use ⊃ Elimination to derive β. Since the two steps used to derive β do not depend on any assumptions, β
does not either.

α Derived from no assumptions

. . .

α ⊃ β Derived from no assumptions

. . .

β ⊃ E (Derived from no assumptions)

These results together show that the derivation system contains the axiom system. That is, anything
that can be proved using the axioms and Modus Ponens can be proved using natural deduction. Proving the
converse, that the axiom system contains the derivation system, is more difficult. One would have to show
that any theorem produced by natural deduction can be proved axiomatically. This involves giving a method
to convert derivations to axiomatic proofs.39

A final consideration is the notion of logical consequence, as opposed to mere theoremhood, in an axiom
system. We can define a notion of deducibility in the system in the following way. Suppose Γ is a set of
sentences of SL and α is a sentence of SL. A deduction of α from Γ is a sequence of sentences, with α as
the last member, each of which is either an axiom of SA, a member of Γ, or the result of the use of Modus
Ponens on two previous steps.

This concludes our survey of non-modal Sentential Logic. We are now ready to move on to study Modal
Sentential Logic.

39See, for example, Richmond H. Thomason, Symbolic Logic: An Introduction, Chapter V.
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