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The S5-systems are the strongest normal systems. That is, they are the strongest modal systems in which
the semantical rules behave uniformly at all the worlds in a frame. In one formulation of the semantics, in
every frame, all worlds must be accessible to all worlds. No stronger constraint can be placed on the
accessibility relation.1

The S5-systems are extensions of the B-systems and the S4-systems, and therefore are extensions of the
K-, D-, and T-systems as well. As with the other families of systems, we will discuss the semantical system
first, then the derivational system, then, briefly, the axiom system, and finally applications.

1Axiom systems known as S6, S7, S8, and S9 are neither contained in nor contained in S5, but are formed by adding axioms to
S2 or systems based on S2.
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1 The Semantical System S5I

S5I is unusual in that it allows for a number of different formulations, each yielding the same entailments.
In this section, we will examine four ways of formulating the semantics.

1.1 Accessibility as Reflexive and Euclidean

One way to build S5I is to begin with the semantical systems TI, in which accessibility is reflexive, and add
the further requirement that accessibility be euclidean.

R is euclidean iff (Πx)(Πy)(Πz)((Rxy ∧ Rxz)→ Ryz).

If a world is accessible to any two (not necessarily distinct) worlds, then those two worlds are accessible to
each other. (The definition of a euclidean relation specifies that one is accessible to the other. But each of
the two accessible worlds could serve as the value of ‘y’ or of ‘z,’ so they are mutually accessible.)

Applied to frames, this means that if a world wi is accessible to w, and a world w j is accessible to w
then w j is accessible to wi. We can define an S5I-frame as a set 〈W,R〉, such that :

(Πw)(w ∈W→ Rww), and

(Πw)(Πwi)(Πw j)((((w ∈W
∧

wi ∈W) ∧ w j ∈W)
∧

(Rwwi ∧ Rww j))→ Rwiw j).

The euclidean character of the accessibility relation in S5I-frames yields what will be called the charac-
teristic consequence of the S5-systems.

{♦α} �S 5I �♦α.

The proof of the entailment can be given using a meta-logical derivation.

Semantical proof that: {♦α} �S 5I �♦α

1 vI(♦α,w) = T Assumption

2 (Rww2
∧

Rww1)→ Rw2w1 R is euclidean

3 (Σwi)(Rwwi
∧

vI(α,wi) = T) SR-♦

4 Rww1
∧

vI(α,w1) = T Assumption

5 Rww2 Assumption

6 Rww1 4
∧

E

7 Rww2
∧

Rww1 5 6
∧

I

8 Rw2w1 2 7→ E

9 vI(α,w1) = T 4
∧

E

10 Rw2w1
∧

vI(α,w1) = T 8 9
∧

I

11 (Σwi)(Rw2wi
∧

vI(α,wi) = T) 10 Σ I

12 vI(♦α,w2) = T 11 SR-♦

13 Rww2 → vI(♦α,w2) = T 5-12→ I

14 vI(�♦α,w) = T 13 SR-�

15 vI(�♦α,w) = T 3 4-14 Σ E
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Note that this derivation does not depend on any restrictions on R other than its being euclidean. So being
euclidean could be added to the semantical systems KI or DI, rather than TI, to produce other semantical
systems with the charateristic S5 consequence relation.

The reasoning can be represented graphically as follows.

x

w2
x ↗ ↘ x

w −→
∗ w1

♦α

T
α

T
♦α

T
�♦α

T

Note that only the requirement that R be euclidean, and not that it be reflexive, plays a role in this proof.
Since R is reflexive in an S5I-frame, S5I contains TI. But the characteristic S5I entailment does not hold

in TI.

{♦α} 2T I �♦α.

Proof. Let W in a frame Fr contain three worlds, w1, w2, and w3, such that Rw1w1, Rw2w2, Rw3w3, Rw1w2,
and Rw1w3. R is therefore reflexive, and so Fr is a TI-frame. Now let vI(α, w2) = T and vI(α, w3) = F. If
follows from SR-♦ that vI(♦α, w1) = T and vI(♦α, w3) = F. From the second result it follows from SR-�
that vI(�♦α, w1) = F.

x x x

→

w1 → w2 w3
α α

T F
♦α ♦α

T F
�♦α

F

It can also be proved that S5I contains both S4I and BI, and that it is stronger than each of the two
systems. To prove the former claim, we show that if a relation is both reflexive and euclidean, it is also
symmetrical and transitive, and hence that any S4I-frame and any BI-frame is an S5I-frame.2

2If n quantifier introductions or eliminations are used in a single step, the rule will be cited as having been used n times, as in ‘2
Π E x 3.’
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Sketch of a proof that if R is reflexive and euclidean, then R is symmetrical

1 (Πx)Rxx Assumption

2 (Πx)(Πy)(Πz)((Rxy ∧ Rxz))→ Ryz) Assumption

3 Rab Assumption

4 Raa 1 Π E

5 (Rab
∧

Raa)→ Rba 2 Π E x 3

6 Rab
∧

Raa 3 5
∧

I

7 Rba 5 6→ E

8 Rab→ Rba 3-7→ I

9 (Πx)(Πy)(Rxy→ Ryx) 8 Π I x 2

Sketch of a proof that if R is reflexive and euclidean, then R is transitive

1 (Πx)Rxx Assumption

2 (Πx)(Πy)(Πz)((Rxy ∧ Rxz))→ Ryz) Assumption

3 Rab
∧

Rbc Assumption

4 Raa 1 Π E

5 (Rab
∧

Raa)→ Rba 2 Π E x 3

6 Rab 3
∧

E

7 Rab
∧

Raa 4 6
∧

I

8 Rba 5 7→ E

9 Rbc 3
∧

E

10 (Rba
∧

Rbc)→ Rac 2 Π E x 3

11 Rba
∧

Rbc 8 9
∧

I

12 Rac 10 11→ E

13 (Rab
∧

Rbc)→ Rac 3-12→ I

14 (Πx)(Πy)(Πz)((Rxy
∧

Ryz)→ Rxz) 13 Π I x 3

It can be proved that the characteristic S5I entailment fails in both S4I and BI.

{♦α} 2S 4I �♦α.

Proof. Let W in a frame Fr contain three worlds, w1, w2, and w3, such that Rw1w1, Rw2w2, Rw3w3, Rw1w2,
and Rw1w3. R is therefore reflexive and (trivially) transitive, so Fr is a S4I-frame.3 Now let vI(α, w2) = T
and vI(α, w3) = F. It follows from SR-♦ that vI(♦α, w1) = T. From the same semantical rule it follows that
vI(♦α, w3) = F. Therefore, by SR-�, vI(�♦α, w1) = F.

3R is trivially transitive because no two distinct worlds meet the antecedent of the conditional defining transitivity.
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x x x

→

w1 → w2 w3
α α

T F
♦α ♦α

T F
�♦α

F

{♦α} 2BI �♦α.

Proof. Let W in a frame Fr contain two worlds, w1, w2, such that Rw1w1, Rw2w2, Rw1w2, and Rw2w1.
R is therefore reflexive and symmetric, so Fr is a BI-frame. Now let vI(α, w1) = F, and vI(α, w2) = T. It
follows from SR-♦ that vI(♦α, w1) = T. From the same semantical rule it follows that vI(♦α, w1) = F, since
α is false at both w1. Therefore, by SR-�, vI(�♦α, w1) = F.

x x

w1 � w2
α α

F T
♦α

T
�♦α

F

1.2 Accessibility as Reflexive, Transitive, and Symmetrical

A second way to generate the semantical system is to require that an S5I-frame is both transitive and sym-
metrical as well as being reflexive. In this way, S5I is built on both S4I and BI. We can define an S5I-frame
as a set 〈W,R〉, such that :

(Πw)(w ∈W→ Rww), and

(Πw)(Πwi)(Πw j)((((w ∈W
∧

wi ∈W)
∧

w j ∈W)
∧

(Rwwi ∧ Rwwi))→ Rwiw j), and

(Πw)(Πwi)(((w ∈W
∧

wi ∈W)
∧

Rwwi)→ Rwiw).

We have already seen that if a relation is euclidean, then it is transitive and symmetrical. We can also prove
the converse.
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Sketch of a proof that if R is transitive and symmetrical, then it is euclidean

1 (Πx)(Πy)(Πz)((Rxy ∧ Ryz))→ Rxz) Assumption

2 (Πx)(Πy)(Rxy→ Ryx) Assumption

3 Rab
∧

Rac Assumption

4 (Rba
∧

Rac)→ Rbc 1 Π E x 3

5 Rab→ Rba 2 Π E x 2

6 Rab 3
∧

E

7 Rba 4 6→ E

8 Rac 3
∧

E

9 Rba
∧

Rac 7 8
∧

I

10 Rbc 4 9→ E

11 (Rab
∧

Rac)→ Rbc 3-10→ I

12 (Πx)(Πy)(Πz)((Rxy
∧

Rxz)→ Ryz) 11 Π I x 3

From this result it follows that the first condition on S5I-frames, that they be euclidean, is a consequence of
the two conditions just stated. Since being euclidean is equivalent to being transitive and symmetrical, the
semantical system would produce the same results if it is structured in either of the two ways. An example
is a proof of the characteristic entailment.
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Sketch of a semantical proof that: {♦α} �S 5I �♦α

1 vI(♦α,w) = T Assumption

2 (Rw2w
∧

Rww1)→ Rw2w1 R is transitive

3 Rww2 → Rw2w R is symmetrical

4 (Σwi)(Rwwi
∧

vI(α,wi) = T) SR-♦C

5 Rww1
∧

vI(α,w1) = T Assumption

6 Rww2 Assumption

7 Rw2w 3 6→ E

8 Rww1 5
∧

E

9 Rw2w
∧

Rww1 7 8
∧

I

10 Rw2w1 3 9→ E

11 vI(α,w1) = T 5
∧

E

12 Rw2w1
∧

vI(α,w1) = T 10 11
∧

I

13 (Σwi)(Rw2wi
∧

vI(α,wi) = T) 12 Σ I

14 vI(♦α,w2) = T 13 SR-♦

15 Rww2 → vI(♦α,w2) = T 5-14→ I

16 vI(�♦α,w) = T 15 SR-�

17 vI(�♦α,w) = T 4 5-16 Σ E

1.3 Accessibility as an Equivalence Relation

A relation that is reflexive, transitive, and symmetrical is called an equivalence relation. So, we can define
the accessibility relation for S5I simply as being an equivalence relation. We can define an S5I-frame as a
set 〈W,R〉, such that :

R is an equivalence relation.

Examples of equivalence relations are being identical to, being the same size as, being semantically
equivalent to. In the case of semantical equivalence, we can say that every sentence in a language, say SL,
is semantically equivalent to itself. If α is semantically equivalent to β, and β is semantically equivalent to
γ, then α is semantically equivalent to γ. And if α is semantically equivalent to β, then β is semantically
equivalent to α.

Note that in SI, not every sentence is equivalent to every other sentence. Instead, sentences which stand
in the equivalence relation to one another constitute an equivalence class of sentences. For example, the
class of all valid sentences is an equivalence class, as is the class of all negations of valid sentences.4 In the
case of being the same size as, for each size there is an equivalence class of things of that size.

Applied to frames, this means that W can be divided into equivalence classes, such that the members
of each class stand in the equivalence relation to themselves and all the other members of the class. It will

4The negations of valid sentences are often called “contradictions,” or “inconsistent” or “logically false” sentences. So the class
of all “contradictions” is an equivalence class.
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be shown that no member wi of one equivalence class is accessible to or from any member w j of any other
equivalence class.

If it were the case that wi is accessible to w j, then wi would stand in an equivalence relation to w j,
and by the properties of the equivalence relation, it would stand in an equivalence relation to all the other
members of the class. Moreover, because wi stands in an equivalence relation to all the members of its
own equivalence class, all of them would stand in the equivalence relation to all the members of the other
equivalence class. Then there would only be one equivalence class, which is contrary to the assumption
that there are two equivalence classes. We can re-prove the characteristic entailment of S5I in terms of
the equivalence relation. Suppose that vI(♦α, w) = T. Then there is some world wi such that Rwwi where
vI(α, wi) = T. Because R is an equivalence class, all worlds w j that are accessible to w are such that wi is
accessible to them. Therefore at all w j accessible to w, vI(♦α, w j) = T, in which case vI(�♦α, w) = T.

1.4 Accessibility as a Universal Relation

If we take accessibility to be an equivalence relation, the set of worlds W might be partitioned into a number
of isolated equivalence classes. That this kind of frame is permitted does not affect any of the semantical
results we have obtained. From the standpoint of a given equivalence class, the truth-value assigments at
worlds belonging to the other classes are completely irrelevant.

If, for example, ♦α is true at a world w, then the truth-value of �♦α will be determined by the value of
♦α at all worlds accessible to w, which is to say all worlds in the equivalence class. The validity in S5I of
♦α ⊃ �♦α depends on its being true in all worlds on all interpretations given any S5I-frame. And it is true at
each world in each equivalence class, so it is true at all the worlds in a frame. So there is no result that holds
for a partitioned set of worlds that does not hold for an unpartitioned set, where all the worlds in a frame
stand in the equivalence relation.

This suggests that we can get the same semantical results for S5I if we make accessibility a universal
relation, i.e., a relation holding between each world in W. In general:

R is universal if and only if (Πx)(Πy)Rxy.

We can define an S5I-frame as a set 〈W,R〉, such that :

(Πw)(Πwi)((w ∈W
∧

wi ∈W)→ Rwwi).

This simplifies considerably the semantical proofs in S5I. For example, suppose that on an S5I-frame Fr
of this type, on an arbitrary interpretation I based on Fr, and at an arbitrary world w in Fr, that vI(♦α, w)
= T. Then at some accessible world wi, α is true. Because R is universal, wi is accessible to all worlds, so
that ♦α is true at all worlds. And because ♦α is true at all worlds, it is true at all worlds accessible to w, in
which case �♦α is true at w.

1.5 Semantics without the Accessibility Relation

As the preceding proof indicates, when accessibility is a universal relation, it plays no role in determining
semantical results. We could just as well have reasoned as follows. Suppose that at an arbitrary world w,
vI(♦α,w) = T. Then at some world wi, vI(α, wi) = T. So vI(♦α, w j) = T at all worlds w j, in which case
vI(�♦α, w) = T.

So yet another version of the semantical system SI5 is one in which there is no relation of accessibility.
Then a frame would be only an ordered single consisting of a set of worlds 〈W〉, and an interpretation would
be a pair 〈W, v〉.

If this simplifying move is to be made, the semantical rules must be changed to omit the reference to
accessibility. The following are the semantical rules for the two main modal operators, ‘�’ and ‘♦.’
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SR-�(5) vI(�α, w)=T if and only if vI(α, wi)=T at all worlds wi in I; vI(�α, w)=F if and only if vI(α,
wi)=F at some world wi in I;.

SR-♦(5) vI(♦α, w)=T if and only if vI(α, wi)=T at some world wi in I; vI(♦α, w)=F if and only if vI(α,
wi)=F at all worlds wi in I.

It is easily proved that these semantical rules are equivalent to the semantical rules with the accessibility
relation R if R is a universal relation.

If R is universal, then reference to R in SR-� can be eliminated.

1 (Πw)(Πwi)(Rwwi) R is universal

2 (Πwi)(Rwwi → vI(α,wi) = T) SR-�

3 (Πwi)(Rwwi) 1 Π E

4 Rww1 3 Π E

5 Rww1 → vI(α,w1) = T 2 Π E

6 vI(α,w1) = T 4 5→ E

7 (Πw)vI(α,w) = T 6 Π I

Exercise. Prove the converse.

1.6 Semantics without Possible Worlds

A final simplification generates what is roughly the semantical system of Carnap, 1946.5 It is possible to
dispense with possible worlds altogether in favor of, in effect, possible interpretations.

An interpretation is defined as in SI, the semantical system for Sentence Logic. It consists of a one-
place valuation function which assigns the value T or the value F, but not both, to each sentence letter. The
semantical rules for the non-modal operators are just as they are with SI.

Carnap’s idea for the modal operator ‘�’ was that it should reflect the semantical concept of “L-truth.”
His informal definition of L-truth (in a system S) is truth “in such a way as . . . can be established on the basis
of the semantical rules of the system S alone, without any reference to (extra-linguistic) facts.”6 The formal
definition of L-truth (in terms of the semantical system SI presented here) is truth in every interpretation,
i.e., validity.

The semantical rule which is supposed to reflect the notion of L-truth is unusual. The two possible
outcomes of the use of the rule are not truth and falsehood within a single interpretation, as with SI. Instead,
the alternatives are truth in all interpretations or falsehood in all interpretations:

vI(�α)=T if and only if (ΠI)vI(α)=T; vI(�α)=F if and only if (ΣI)vI(α)=F.

The corresponding rule for possibility then would be as follows:

vI(♦α)=T if and only if (ΣI)vI(α)=T; (vI(♦α)=F if and only if (ΠI)vI(α)=F.
5“Modalities and Quantification,” Journal of Symbolic Logic 11 (1946), pp. 33-64, and Meaning and Necessity (1948). The

chief differences are that Carnap does not use the modern notion of an interpretation, in which a valuation function assigns truth-
values to sentences. In place of interpretations he uses “state-descriptions,” which in Sentential Logic would be a set of sentence
letters. What corresponds to the assignment of ‘T’ is membership in the set, and what corresponds to the assignment of ‘F’ is non-
membership in the set. Hintikka based his early modal semantics on this method, but Kripke’s formulation in terms of valuation
functions ultimately became the standard.

6Meaning and Necessity, Second Edition, p. 10.
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A consequence of these rules is that the truth-value of any modal sentence is the same on all inter-
pretations. All necessity-sentences true on a given interpretation are true on all interpretations, and all
possiblity-sentences true on a given interpretation are true on all interpretations. Suppose that on a given
interpretation I, vI(�α)=T. Then by the semantical rule, (ΠI)vI(α)=T. Using the semantical rule in the other
direction, we can assert that �α has the value T on an arbitrary interpretation, and so it has the value T on
all interpretations.
Exercise. Prove that that the corresponding claim holds for possibility.

The following is a proof of the characteristic S5I entailment. In giving the proof, we will appeal to the
following lemma, which states the result just given, for the case of the ‘♦’:

vI(♦α)=T→ (ΠI)(vI(♦α)=T)

Now it is easy to prove the entailment.

Sketch of a semantical proof that: {♦α} �S 5I �♦α

1 vI(♦α) = T Assumption

2 (ΠI)(vI(♦α) = T) Lemma

3 vI(�♦α) = T 2 Rule for ‘�’

Carnap had good reason to give the semantical rules he did, as his goal was to represent logical necessity.
But given the structure of the rules he adopted to represent logical necessity, there is no hint of any kind
of relativity of the truth-values of modal sentences. It is small wonder that Carnap did not find in this
semantical system a key to possible-worlds semantics with the accessibility relation.

1.7 Reduction of Modalities in S5I

We saw that in the S4-systems, there remain a number of irreducible strings of modalities. That is, there
are sentences which are prefixed with a string of two or more modal operators (of both kinds) which are not
equivalent to sentences with fewer operators. In the S5-systems, this result does not hold. Every sentence
prefixed with a string of two or more modal operators is equivalent to a sentence with only one operator, the
innermost one. This is the ultimate “reduction” of modalities. The only further reduction would be to allow
a sentence with a single modal operator as its main operator to be equivalent to a sentence with no moral
operator. This would collapse the modal system into the non-modal system.

The modal sentences ♦�♦α and �♦α, are reducible to ♦α, and the modal sentences �♦�α and ♦�α, are
reducible to the �α. We have already seen how �♦α reduces to ♦α. The result from left to right holds in the
TI and the result from right to left has been shown in this module to hold in S5I (in its various guises).

Exercise. Prove the other three reductions in the variants of the semantical system.

2 The Derivational System S5D

As was the case with the symmetrical accessibility relation in the semantical system BI, the euclidean re-
lation is not readily mapped onto the structure of Fitch-style derivations. So as with BD, we shall resort
to a device that simulates the effect of a euclidean accessibility relation. Inspection of the characteristic S5
entailment, {♦α} �S 5I �♦α, shows that if ♦α is taken to be true at w, then it must also be true at all accessible
worlds, and hence at an arbitrary accessible world. So a sound rule would be one that allows us to use Strict
Reiteration to bring a sentence of the form ♦α across a restricted scope line intact.
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Strict Reiteration for ‘�’ (5)

♦α Already derived

� ...

♦α SR-�(5)

We shall assume that the derivational system resulting from the addition of SR(5) to the rules for TD is
complete as well as being sound.

With SR(5), proof of the characteristic derivational-relation is straightforward.

To prove: ♦α `S 5D �♦α

1 ♦α Assumption

2 � ♦α 1 SR-�(5)

3 �♦α 2 � I

For systems with ‘�’ as primitive and ‘♦’ as derived, we can amend the strict reiteration rule using
Duality. We begin with ∼�α instead of α and strictly “reiterate” ∼�α

Strict Reiteration for ‘∼�’ (5)

∼�α Already derived

� ...

∼�α SR-∼� (5)

This is easily seen to be a derived rule given the original system with SR (5).

Strict Reiteration for ‘∼�’ (5) as a derived rule

∼�α Already derived

♦∼α Duality
� .

.

.

♦∼α SR (5)

∼�α Duality

We can show that the SR(B) and SR(4) rules are derived rules given SR(5) and Strong ♦ Introduction
(which reflect the euclidean and reflexive nature of accessibility, respectively). For SR(B), this is easy to
see. When we are given a sentence α on a line, we can use Strong ♦ Introduction to get ♦α and then apply
the SR(5) rule.
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Strict Reiteration (B) as a derived rule

1 α Already derived

2 ♦α Strong ♦ I

3 � ...

4 ♦α SR(5)

The proof that SR(4) is a derived rule is much more complicated. This is mirrored by the greater com-
plexity of the derivation of transitivity of a relation from its being reflexive and euclidean. In particular, two
different uses of Π Introduction had to be made in the former derivation.

Strict Reiteration for ‘�’ (4) as a derived rule

�α Already derived

♦�α Strong ♦ I

� ...

♦�α SR-�(5)

∼�α Assumption

♦∼α Duality
� ♦∼α SR-�(5)

∼�α Duality

∼♦�α ∼♦ I

♦�α Reiteration

�α ∼ E
� α SR-�

Given that the semantical system for S5I can be generated by making accessibility an equivalence rela-
tion, it should be the case that SR-�(5) is a derived rule given � E, SR(B), and SR-�(4). Respectively, they
reflect reflexivity, symmetry, and transitivity. Indeed, it can be shown that SR-�(5) is a derived rule given
just the two Strict Reiteration rules. This is most easily demonstrated using Duality and the derived SD rule
Double Negation.

12



Strict Reiteration for ‘�’ (5) as a derived rule

♦α Already derived

� ...

∼♦α Assumption

�∼α Duality

♦♦α SR(B)

♦♦∼∼α Double Negation

♦∼�∼α Duality

∼��∼α Duality
� � ∼α SR-�(4)

�∼α � I

��∼α � I

♦α ∼ E

Given the simplification introduced by the no-accessibility semantical system S5I, it might be wondered
whether a simpler derivational system could be based on it. The simplified semantics has the property that
the truth-value of a modal sentence is invariant across worlds.7 If ♦α is true at a world w, then it is true at
all worlds in W, since all that it required is that α be true at some world in W. Similar reasoning holds for
�α and α J β.

To reflect this situation, we can still use restricted scope lines to represent other worlds, but now the
only restriction is that a reiterated sentence must be modal. To generate a simplified derivational system
S5D, we can consolidate the all the Strict Reiteration rules into a single rule: If α is a modal sentence, it
may be strictly reiterated across any number of restricted scope lines. We can call this rule SR(M), or Strict
Reiteration for Modalities.

Strict Reiteration for Modalities

α Already derived

� ...

α SR(M)

Provided: α is a sentence whose main operator is modal

This blanket rule gives us the effect of the basic Strict Reiteration rule for ‘�’ (which is also the rule for
KD), since �α can be strictly reiterated by SR(M) and � Elimination applied to yield α, which is what SR-�
requires.

7Recall that a modal sentence is one whose main operator is modal.
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Strict Reiteration for ‘�’ as a derived rule

�α Already derived

� ...

�α SR(M)

α � E

The proof of Strict Reiteration for ‘�’(4) as a derived rule is straightforward. There are two uses of
SR(M) followed by a use of � Elimination.

Strict Reiteration for ‘�’(4) as a derived rule

�α Already derived

� ...

�α SR(M)

� ...

�α SR(M)

α � E

For SR(B), if α occurs in a step, Weak ♦ Introduction may be applied, and the resulting ♦α may be
strictly reiterated by SR(M).

Strict Reiteration (B) as a derived rule

α Already derived

♦α Strong♦ I

� ...

♦α SR(M)

This shows that SR(M) yields all the less-powerful Strict Reiteration rules as derived rules. It remains to
be shown that the original Strict Reiteration rules yield SR(M). But we have already shown Fitch’s version
of Strict Reiteration for ‘�’ (4) allows the strict reiteration of �α intact across a strict scope line. And the
Strict Reiteration for ‘�’ (5) similarly allows the strict reiteration of ♦α intact.

Exercise. Show why sentences whose main operator is ‘J’ may be reiterated intact across strict scope lines,
given the rules for KD through S5D.

3 The Axiom System S5

The axiom system S5 is obtained by adding to the axiom schemata of T the further axiom schema:

`S 5 ♦α ⊃ �♦α.

This axiom is valid in S5I, by the same reasoning that was used to validate the corresponding semantical
entailment.
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4 Applications of the S5-Systems

The S5-systems are extremely strong—too much so for most applications. They seem only to represent
logical modalities.

4.1 Alethic Modal Logic

The original application of the S5-systems was made by Carnap, who understood the ‘�’ to represent logical
necessity. His way of understanding the meaning of logical necessity is close to our notion of what holds by
virtue of “laws of logic.”

The concept of logical necessity . . . seems to be commonly understood in such a way that it
applies to a proposition p if and only if the truth of p is based on purely logical reasons and not
dependent upon the contingency of facts; in other words, if the assumption of not-p would lead
to a logical contradiction, independent of facts. (Meaning and Necessity, p. 174)

Carnap defended his choice of S5I as the semantical system for logical necessity and possibility by
claiming that the fact of L-truth is itself based on purely logical reasons. Here is a quotation from Meaning
and Necessity. Carnap uses different notation than ours. It should be kept in mind that his “S2” is our S5I,
and his ‘N’ is our ‘�.’

Let ‘A’ be an abbreviation for an L-true sentence in S2 (for example, ‘Hs ∨ ∼Hs’). Then ‘N(A)’
is true, according to [semantical rule] 39-1. And, moreover, it is L-true, because its truth is
established by the semantical rules which determine the truth and thereby the L-truth of ‘A’,
together with the semantical rule for ‘N’, say 39-1. Thus, generally, if ‘N(. . .)’ is true, then
‘NN(. . .)’ is true; hence any sentence of the form ‘Np ⊃ NNp’ is true. This constitutes an
affirmative answer to the controversial question mentioned in the beginning. (Meaning and
Necessity, Second edition, p. 174)

Another argument in favor of S5I might be found in the fact that it has a semantics with no accessibility
relation. It could be held that accessibility itself represents a “contingency of facts” that helps determine
truth-values. It might seem that from the standpoint of pure logic, there is nothing which dictates the
superiority of one non-universal kind of accessibility over any other (or of there being no restrictions at all).
In S5I, accessibility can be dispensed with altogether.

In a semantical system based on essentially on accessibility, there is a split between the possibility
represented by the truth-values of sentences at the possible worlds (which really represent possible interpre-
tations) and the possibility represented by the accessiblilty of possible worlds. If logical possibility is to be
the most general kind of possibility (which seems plausible), then the more limited possibility expressed by
the ‘♦’ in systems weaker than the S5-systems is something different from logical possibility. Two worlds
might have the same truth-values for all its sentences, in which case there is no logical difference between
them, and one might be “possible” and the other not relative to a given world.

Reasoning in the other direction shows the unsuitability of the S5-systems for representing hypothetical
necessity. Given the availability of a formulation of the semantics without accessibility, there is no way for
the modal operators to express a condition that might or might not hold. Thus, for example, we can make no
distinction in S5 between logical, metaphysical, and physical possibility. The necessity operator expresses
an absolute, not a hypothetical, notion of necessity in the S5-systems. The truths of necessity are truths of
logic and are not contingent in any way.
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4.2 Conditional Logic

With respect to strict implication, the most important result in the S5-systems is that {♦(α J β)} �S 5I α J β.
In terms of representing logical implication, there seems to be no good reason to reject this entailment, so
long as one is tolerant of the “paradoxes.” (This is the result we reached in considering the S4-systems as
a representation of strict implication.) If we accept the argumentation of Carnap, the possibility of a strict
implication holding is a possibility that presumably would hold by virtue of the logical form of α J β. So it
seems that if it is possible that α strictly implies β, then α really does strictly imply β.

If α J β is supposed to express a relation that holds at worlds that meet a certain condition, then we
run up against the objection that the S5-systems are not suitable for representing hypothetical necessity and
possibilities.

4.3 Deontic Logic

It is clear that the S5-systems are far too strong for a deontic interpretation. They contain the objectionable
elements of the T-, B-, and S4-systems, as well as a further consequence, {POα}�S 5IOα, that is problematic
for some conceptions of obligation and permission. Let us suppose that it is legally permissible in the United
States in 2005 that there be an obligation to perform some military service. (It may be permissible because
conscription is permitted by the Constitution.) That surely does not mean that it is in fact legally obligatory
to perform some military service. On the other hand, in a system of absolute obligation, as might be found
in Kant’s “categorical imperative,” the distinction between the obligatory and the permissibily obligatory
might collapse.8

4.4 Doxastic Logic

If the S5-systems are understood as representing a logic of belief, they carry with them the result that
{Ps,tBs,tα} �S 5IBs,tα (as well as the undesirable results from the T- and B-systems). If it is compatible with
what I believe that I believe that α, then I believe that α. This consequence looks dubious because of its
equivalent, {∼Bs,tα} �S 5IBs,t ∼Bs,tα. Is it the case that a logical saint believes of everything that he does not
believe, that he does not believe it?’

Ordinary people do not satisfy this condition, for much of what we do not believe is the result of our not
having conceived of various possible truths. Now the logical saint was introduced in order to accommodate
the fact that given the semantical system KI, all valid sentences of KI are believed. (And similarly for the
stronger systems.) So the saint would have to have a conception of all the sentences in the language, since
a valid sentence could be any of them. Still, sainthood extends only as far as logical matters. Whether the
saint believes anything whose truth is not dictated by the semantics does not seem to lie in the domain of
logic.

This concern might still be overcome by a further consideration. Suppose one could survey all one’s
beliefs. Then what one does not believe is simply what is not found as the result of the survey. We granted
in the last section that it is plausible that if the logical saint believes something, then he believes that he
believes it. The reason was that it is plausible that a logical saint has complete command of what his beliefs
are. Given what was just said, it would then be plausible that he has complete command of what his beliefs
are not. Given the semantical system S4I, if he does not believe he believes something, then he does not
believe it. And if he does not believe it, then it seems that we should say that he would recognize this and
thus believe that he does not believe it.

8For the original statement of the categorical imperative, see Kant’s Groundwork of the Metaphysics of Morals.
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4.5 Epistemic Logic

Given that knowledge has a belief requirement, the result that might work in doxastic logic, {Fs,tKs,tα} �S 5I

Ks,tα, might seem to work in epistemic logic as well. But now consider the equivalent {∼Ks,tα} �S 5I

Ks,t ∼Ks,tα. The reason one may fail to know something might be that he has a false belief. But we
cannot presume that the logical saint is able to detect all of his false beliefs and hence know what he does
not know as the result of having them. He would have to be omniscient—a epistemological god rather than
a mere logical saint.

4.6 Temporal Logic

The S5-systems are also too strong as a logic of futurity. Aside from the problems with the T- and B-systems,
they give the result that if at some time in the future α will always be the case, α now will always be the
case. When I am 60 years old, it will always be the case that I will be older than 59 years old, but since I
am still in my 50s, it will not always be the case (starting from the present) that I am older than 59 years
old. Similar remarks hold for the past. More generally, the reduction of the modalities into only two does
not seem appropriate for time as we commonly conceive it. Each time is a unique standpoint with respect to
its own future and past.

17


