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Modal Sentential Logic I

Exercise. Show how to define the circle in terms of the fish-hook. For a much
more difficult challege, try to define either one-place operator in terms of strict
implication.

α ≺ β =Df ∼ ♦(α & ∼ β)
∼ ♦(α & ∼ β) =Df ∼ (α◦ ∼ β)
Therefore, α ≺ β =Df ∼ (α◦ ∼ β)

∼ α ≺ α =Df ∼ ♦(∼ α & ∼ α)
∼ ♦(∼ α & ∼ α) is equivalent to ∼ ♦ ∼ α [by Idempotence]
∼ ♦ ∼ α =Df �α
Therefore, ∼ α ≺ α is equivalent to �α

∼(α ≺∼ α) =Df ∼∼ ♦(α & ∼∼ α)
∼∼ ♦(α & ∼∼ α) is equivalent to ∼∼ ♦(α & α)[by Double Negation]
∼∼ ♦(α & α) is equivalent to ♦(α & α) [by Double Negation]
♦(α & α) is equivalent to ♦α[by Idempotence]
Therefore, ∼(α ≺∼ α) is equivalent to ♦α

Exercise. Give an argument for why truth-functional entailment for SL carries
over to entailment in all frames of MSL.

A set of sentences {γ1, · · · , γn} truth-functionally entails a sentence α if and only
if on all interpretations on which each γi is true, α is true. An interpretation
in the semantics for SL is an assignment of truth-values to all the sentence-
letters of SL. A set of sentences {γ1, · · · , γn} entails α in a frame just in case
for any I based on Fr and any w in W in Fr, if vI(γ1, w)=T and, · · · , and
vI(γn, w)=T, then vI(α, w)=T. Truth-values are assigned to sentence-letters
at worlds in frames in exactly the same way as they are assigned to sentences
letters in SL-interpretations. The truth-definitions for non-modal sentences are
made in exactly the same way in the semantics for SL and in the semantics
for MSL. Now suppose {γ1, · · · , γn}�SL α and vI(γi, w)=T for an arbitrary
world w in an arbitrary frame, for all the members of {γ1, · · · , γn}. Since vI(γi,
w) is based on exactly the same determinations as the truth-value of γi in the
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semantics for SL, vI(α, w) will be given the same value as with SL, namely T.
Since this holds for an aribitrary world and frame, {γ1, · · · , γn} �Fr α.

Exercise: Give a definition of consistency in a frame which corresponds to the
notion of truth-functional consistency. A set of sentences is truth-functionally
consistent if and only if there is a row on a truth-table which makes all the
sentences in that set true.

The definition from Sentential Logic does not carry over precisely, because in
Modal Sentential Logic, truth is always relative to a world. So it seems reason-
able to say that a set of sentences is consistent in a frame when all the sentences
are assigned T at some world in the frame by some interpretation based on the
frame. The fact that on an interpretation, all the sentences might be assigned
F at a given world does not show that the set of sentences is inconsistent, any
more than the fact that they are assigned F on a row of a truth-table shows
that it is inconsistent.

Exercise. From ‘�P’ and ‘�(P ⊃ Q)’ we can derive ‘�Q’. This is equivalent
to deriving ‘∼ ♦P’ from ‘∼ ♦Q’ and ‘∼ ♦(P & ∼Q)’ Explain why these two
derivations are equivalent.

By the definitional equivalences, ‘�P’ is equivalent to ‘∼ ♦ ∼P’, ‘�(P ⊃ Q)’ is
equivalent to ‘∼ ♦ ∼(P ⊃ Q)’, and ‘�Q’ is equivalent to ‘∼ ♦ ∼Q’. Within a
restricted scope line, we can derive ‘Q’ from ‘P’ and ‘P ⊃ Q’. By the derivational
rules for SD, we can therefore derive ‘∼P’ from ‘∼Q’ and ‘(P ⊃ Q)’ inside a
strict scope line. ‘P ⊃ Q’ is derviationally equivalent to ‘∼(P & ∼Q)’. So the
use of the Strict Reiteration rule for necessity yields an inference from ‘P’ and
’P ⊃ Q’ to ‘Q’ which is equivalent to the way the use of the Strict Reiteration
rule for Impossibility yields a derivation from ‘∼Q’ and ‘∼(P & ∼Q)’ to ‘∼P.
And the use of the respective Introduction rules yields the desired results.

Exercise. Give an example of an entailment and derivation that hold for K
and KD but not in SL and SD, respectively. Then show why closure holds in
that case.

{�(P & Q)}�K�P, {�(P & Q)}`K�P. These do not hold in the semantical
or derivational systems for SL because the component sentences contain modal
operators that are not part of the syntax of SL.

Closure yields the following results: {��(P & Q)} �K ��P, {��(P & Q)} `K
��P.

For the entailment, suppose that for an arbitrary world w on an interpreta-
tion I, vI(��(P & Q), w)=T. Then at all accessible worlds wi, vI(�(P & Q),
wi)=T. And so at all worlds wj accessible to wi, vI((P & Q), wj)=T. From
the truth-definition of the conjunction symbol, we have it that vI(P, wj)=T.
Because wj is aribtrary, for all worlds accessible to wi, vI(�P, wi)=T. By
the same reasoing, vI(��P, w)=T. Since the choice of w and I are arbitrary,
{��(P & Q)}�K��P, which was to be proved.
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Here is the derivation.
1 ��(P & Q) Assumption
2 �(P & Q) 1 Strict Reiteration
3 P & Q 2 SR
4 P
5 �P 3-4 � Introduction
6 ��P 2-5 � Introduction

Exercise. Prove the following semantic equivalence: ♦α is equivalent to ∼ � ∼
α.

On an arbitrary interpretation I and arbitrary world w in I,

vI(♦α, w)=T iff
for some wi such that Rwwi, vI(α, wi)=T iff
for some wi such that Rwwi, vI(∼ α, wi)=F iff
for some wi such that Rwwi, it is not the case that vI(∼ α, wi)=T iff
vI(� ∼ α, w)=F iff
vI(∼ � ∼ α, w)=T. QED

Since the choice of interpretations and worlds is arbitrary, ♦α and ∼ � ∼ α
have the same truth-value on all interpretations, and so they are semantically
equivalent.

Exercise. Show that {∼ � ∼ α}`K ♦α.

1 ∼ � ∼ α Assumption
2 ∼ ♦α Assumption
3 ∼ α 2 Strict Reiteration (∼ ♦)
4 � ∼ α 3 � Introduction
5 ∼ � ∼ α 1 Reiteration
6 ♦α 2-5 ∼ Elimination

Exercise. Justify the rule of Strict Reiteration (≺) as a derived rule of KD.

This rule is only a derived rule if α ≺ β::�(α ⊃ β) is given as a replacement
rule. Then the following derivation-schema holds.

α ≺ β
�(α ⊃ β) Replacement Rule
.
.
.
α ⊃ β Strict Reiteration

Exercise. Give a derivation-schema that shows closure of a single possibility-
sentence over strict implication.
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♦α
α ≺ β
α Strict Assumption
α ⊃ β SR(≺)
β ⊃ Elimination
♦β ♦ Elimination

Exercise. Give a derviation to prove the following: {(α ≺ β)&(β ≺ α)} `K
�(α ≡ β).

(α ≺ β)&(β ≺ α) Assumption
α ≺ β & Elimination
β ≺ α & Elimination
α ⊃ β Strict Reiteration (≺)
β ⊃ α Strict Reiteration (≺)
β ≡ α ≡ Introduction
�(α ≡ β) � I

Exercise. Symbolize the conditionals: “If p and q are consistent, then q and p
are consistent”, “If q and p are consistent, then it is possible that p be true”,
“If it is possible that p be true, then p is consistent with itself”, as strict impli-
cations. Show that they hold in the semantics for K.

(α ◦ β) ≺ (β ◦α). Consider an aribitrary world w in an arbitrary interpretation
I. Suppose vI(α◦β, w)=T. Then at some accessible world wi, vI(α&β, wi)=T.
So vI(α, wi)=T and vI(β, wi)=T. Then vI(β&α, wi)=T. In that case, vI(β◦α,
w)=T. Since the choice of world and interpretation is arbitrary, the entailment
holds.

(α ◦ β) ≺ ♦α. Consider an aribitrary world w in an arbitrary interpretation I.
Suppose vI(α ◦ β, w)=T. Then at some accessible world wi, vI(α&β, wi)=T.
So vI(α, wi)=T. Then vI(♦α, w)=T. Since the choice of world and interpre-
tation is arbitrary, the entailment holds.

♦α ≺ (α ◦ α). Consider an aribitrary world w in an arbitrary interpretation
I. Suppose vI(♦α, w)=T. Then at some accessible world wi, vI(α, wi)=T. So
vI(α&α, wi)=T. Then vI(α ◦α, w)=T. Since the choice of world and interpre-
tation is arbitrary, the entailment holds.

Modal Sentential Logic II

Exercise. Give a justification for ∼ � Introduction using the semantics for D.

The occurrence of ∼ α inside a restricted scope line indicates that it is taken
to be true at an arbitary world wi accessible to w, if there is one. Suppose
v(∼ α,wi)=T. Then v(α,wi)=F. Now suppose further that v(�α,w)=T. Then
if a world wi is accessible to w, then, v(α,wi)=T. By the seriality of the accessi-
bility relation, there is at least one world accessible to w. So at wi, v(α,wi)=T
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and v(α,wi)=F, which is forbidden by the semantical rules. So the supposition
that v(�α,w)=T is false, and so v(�α,w)=F and v(∼ �α,w)=T. So we can
end the restricted scope line and write down ∼ �α.

Exercise. Show that with Duality as a replacement rule and ∼ � Introduction,
the rule of Weak ♦ Introduction can be replaced.

.

.

.
α
∼∼ α
∼ � ∼ α ∼ � I
∼∼ ♦α Duality
♦α DN

Exercise. Show that Strong ♦ Introduction and � Elimination are inter-
derivable.
�α
∼ α Assp
♦ ∼ α S ♦ I
∼ ♦ ∼ α Duality
α ∼ E

α
∼ ♦α Assp
� ∼ α Duality
∼ α α R
♦α ∼ E

Exercise. Prove the following S4 -equivalences: ♦♦α and ♦α, ♦�♦�α and
♦�α, �♦�♦α and �♦α.

Since R is reflexive in the S4 semantics, if ♦α is true at a world, then ♦♦α is
also true at that world, as it is itself an accessible world where ♦α is true. Now
suppose that ♦♦α is true at world w. Then there is an accessible world wi at
which ♦α is true. In that case, there is a world wj accessible to wi at which α is
true. Since accessibility is transitive in S4, Rwwj , in which case ♦α is true at w.

Suppose v(♦�α,w)=T. Then there is an accessible world wi such that v(�α,wi)=T.
Suppose Rwiwj and Rwjwk. By transitivity, Rwiwk. So v(α,wk)=T. In that
case, v(�α,wj)=T. By reflexivity, v(♦�α,wj)=T. Then v(�♦�α,wi)=T. Fi-
nallly, since by the original supposition, Rwwi, v(♦�♦�α,w)=T.

For the converse, we prove the contrapositive. Suppose further that v(♦�α,w=F.
Then for every world wi accessible to w, v(�α,wi)=F. And for every world wj

accessible to wi, v(α,wj)=F. Now let Rwjwk. By transitivity, v(α,wk)=F.
Further, v(�α,wk)=F, since transitivity requires that α have the value F at
any world accessible to it. So v(♦�α,wj=F. Now since the choice of wj is

5



arbitrary, v(�♦�α,wi))=F, in which case v(♦�♦�α,w=F.

Suppose v(�♦�♦α,w)=T and that Rwwi. Then v(♦�♦α,wi)=T. Let Rwiwj ,
in which case Rwwj . v(�♦α,wj=T. (That there is such a world is guaranteed
by the seriality of R.) So v(��♦α,wi)=T. Because of reflexivity, applied twice,
v(♦α,wi)=T. Since the choice of wi is arbitrary, v(�♦α,w)=T.

For the converse, suppose that v(�♦α,w)=T and that Rwwi and Rwiwj .
By transitivity, Rwwj . So v(♦α,wj)=T. Hence v(�♦α,wi)=T. By reflexivity,
v(♦�♦α,wi)=T. Finally, v(�♦�♦α,w)=T as the choice of wi was arbitrary.

Exercise. Show how, with any version of Duality as a replacement rule, the
impossibility version of SR(4) yields the same results as the necessity version.

1 �α Assumption
2 ∼ ♦ ∼ α 1 Duality
3 ∼∼ α 1 SR(S4)
4 α 3 DN
5 �α 3-4 � I
6 ��α 3-5 � I

Exercise. Use derivations to establish the equivalences shown in the penulti-
mate exercise.

1 ♦�α Assumption
2 �α Modal Assp
3 α 2 SR(S4)
4 �α 3 � I
5 ♦�α 4 S ♦ I
6 �♦�α 3-5 � I
7 ♦�♦�α 1 2-6 ♦ I

1 �♦α Assp
2 ♦α 1 SR(S4)
3 �♦α 3 � I
4 ♦�♦α 3 S ♦ I
5 �♦�♦α 2-4 � I

1 �♦�♦α Assp
2 ∼ �♦α Assumption
3 ♦� ∼ α 2 Duality x2
4 � ∼ α Modal Assp
5 ∼ α 4 SR(S4)
6 � ∼ α 5 � I
7 ♦� ∼ α 6 S ♦ I
8 �♦� ∼ α 5-7 � I
9 ♦�♦� ∼ α 3 4-8 ♦ I
10 ∼ �♦�♦α 9 Duality x 4
11 �♦�♦α 1 R
12 �♦α 3-11 ∼ E
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1 ♦�♦�α Assp
2 ∼ ♦�α Assp
3 �♦ ∼ α 2 Duality x2
4 ♦ ∼ α 3 SR(S4)
5 �♦ ∼ α 4 � I
6 ♦�♦ ∼ α 5 S ♦ I
7 �♦�♦ ∼ α 4-6 � I
8 ∼ ♦�♦�α 7 Duality x4
9 ♦�♦�α 1 R
10 ♦�α 3-9 ∼ E

Exercise. Show that SR(B)* is a derived rule given SR(B) and Duality as a
replacement rule.

∼ α
♦ ∼ α SR(B)
∼ �α Duality

Exercise. Suppose the operator ‘F’ is taken to represent what is the case now
or in the future, and that ‘G’ indicates what is now and always will be. Would B
generate results for Fα and Gα that would reasonably represent these notions?

A possible world would represent what is the case at a given time. We may
suppose that this time is now. Then in this reading of B, what is now the case
that α entails that it is now and always will be the case that it is now or will
sometime be the case that α. It seems that what is now the case might not
be the case in the future. So suppose that α is now the case but will not be
the case after now. Then it will not always be the case that it will “now” (i.e.,
at that future time) or sometime thereafter be the case that α. So B remains
unsuitable as a logic of time.

Exercise Prove that the modalities, ♦�♦α and �♦α, are reducible to ♦α, and
the modalities �♦�α and ♦�α, are reducible to the �α.

That �♦α entails ♦α is trivial given that R is reflexive in S5 semantics. Now
suppose that v(♦α,w)=T. So for some accessible world, call it w1, v(α,w1)=T.
Suppose further that Rww2. Since R is Euclidean, Rw2w1, so v(♦α,w2)=T.
Since the choice of w2 was arbitrary, v(�♦α,w2)=T.

Suppose v(♦�♦α,w)=T. Then there is a world wi accessible to w such that
v(�♦α,w)=T. Since R is symmetrical, v(♦α,w)=T. For the converse, suppose
v(♦α,w)=T. Then there is an accessible world w1 such that v(α,w1)=T. Now
suppose that Rww2, in which case Rw2w1. Then v(♦α,w2)=T. As the choice
of w2 was arbitrary, v(�♦α, w)=T. Because R is reflexive, v(♦�♦α, w)=T.

Suppose v(�α,w)=T. By reflexivity, v(♦�α,w)=T. Conversely, suppose that
v(♦�α,w)=T. Then there is an accessible world w1 such that v(�α,w1)=T.
Take an arbitrary world w2 accessible to w1, which, by the euclidean character
of R, is accessible to w1. Then v(α,w2)=T. So v(�α,w)=T.

Suppose v(�♦�α,w)=T. Then because of reflexivity, v(♦�α,w)=T. It has al-
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ready been shown that under this condition, v(�α,w)=T. Conversely, suppose
that v(�α,w)=T. Now suppose Rww1. By symmetry, v(♦�α,w1)=T. Since
the choice of w1 is arbitrary, v(�♦�α,w)=T.

Exercise. Use derivations to establish the equivalences just proved in the rel-
ative semantics for S5.

1 �♦α Assumption
2 ♦α 1 � E

1 ♦α Assumption
2 ♦α 1 SR(5)
3 �♦α 2 � I

1 ♦α Assumption
2 ♦α 1 SR(5)
3 �♦α 2 � I
4 ♦�♦α 3 S ♦ I

1 ♦�♦α Assumption
2 ∼ ♦α Assumption
3 ♦ ∼ ♦α 2 SR(B)
4 �♦ ∼ ♦α 3 � I
5 ∼ ♦�♦α 4 Duality x 2
6 ♦�♦α 1 R
7 ♦α 1-6 ∼ E

1 �α Assumption
2 ♦�α 1 S ♦ I

1 ♦�α Assumption
2 ∼ �α Assumption
3 ♦ ∼ α 2 Duality
4 ♦ ∼ α 3 SR(5)
5 �♦ ∼ α 4 � I
6 ∼ ♦�α 5 Duality x 2
6 �α 2-6 ∼ E

1 �α Assumption
2 ♦�α 1 S ♦ I
3 ♦�α 2 SR(5)
4 �♦�α 3 � I

8



1 �♦�α Assumption
2 ♦�α 1 � E
3 ∼ �α Assumption
4 ♦ ∼ α 3 Duality
5 ♦ ∼ α 4 SR(5)
6 �♦ ∼ α 5 � I
7 ∼ ♦�α 6 Duality x 2
8 ♦�α 1 R
9 �α 2-8 ∼ E

Exercise. Show how the derivational system yields the characteristic derivation-
relation for S4.2.

1 ♦�α Assumption
2 ♦�α 1 SR(4.2)
3 �α Modal Assumption
4 α 3 � E
5 ♦α 3-4 ♦ E
6 �♦α 2-5 � I

Exercise. Use a semantical argument or a derivation (along with Lenzen’s def-
inition of belief) to show that {Bα} �S4.2KBα and {Bs,tα} �S4.2Ps,tKs,tα.

By the definition of belief, we have the following (omitting subscripts for clarity).
{∼K∼Kα}�S4.2K∼K∼Kα, and {$ ∼K∼Kα}�S4.2∼∼K∼K∼ α (understainding
Pα as ∼B∼α). We can get a further reduction by using Fα for ∼K∼Kα and
Double Negation. {FKα}�S4.2KFKα, and {FKα}�S4.2KFα. We will show these
relations using derivations in S4.2.

1 FKα Assumption
2 FKα 1 SR(5)
3 KFKα 2 � I

1 FKα Assumption
2 FK α 1 SR(4.2)
3 Kα Modal Assumption
4 α 3 � E
5 Fα 3-4 ♦ E
6 KFα 2-5 � I

Modal Predicate Logic

Exercise. Determine whether d1, d3, d4, satisfy ‘(∀x)(∃y)Fxy’ on an interpre-
tation where D={u1,u2} and v(F,w)={〈u1,u1〉, 〈u2,u2〉}.

d1(x)=u1 and d1(y)=u1,
d3(x)=u2 and d3(y)=u1,
d4(x)=u2 and d4(y)=u2.

All three variable-assignments satisfy the sentence, and all for the same rea-
son. One type of x-variant of each of the three is di[u1/x]. The other type of
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x-variant of each of the three is di[u2/x]. All instances of each of these types
of x-variants satisify ‘(∃x)Fxy’. For di[u1/x], one type of y-variant will be of
the form di[u1/x, u1/y], which satisifies ‘Fxy’. For di[u2/x], we have di[u2/x,
u2/y], which also satisfies ‘Fxy’. Therefore in both cases, there is at least one
y-variant which satisifies ‘Fxy’, and so in both cases, ‘(∃x)Fxy’ is satisifed. In
that case di satisifies ‘(∀x)(∃y)Fxy’.

Exercise. Using Duality and Quantifier Negation (from the derivational sys-
tem for PLI ), prove that any instance of (∀x)�α(x) ⊃ �(∀x)α(x) is an instance
♦(∃x)α(x) ⊃ (∃x)♦α(x), and that any instance of �(∀x)α(x) ⊃ (∀x)�α(x) is
an instance of (∃x)♦α(x) ⊃ ♦(∃x)α(x).

(∀x)�α(x) ⊃ �(∀x)α(x) iff
∼ �(∀x)α(x) ⊃∼ (∀x)�α(x) iff
♦ ∼ (∀x)α(x) ⊃∼ (∀x)�α(x) iff
♦(∃x) ∼ α(x) ⊃∼ (∀x)�α(x) iff
♦(∃x) ∼ α(x) ⊃ (∃x) ∼ �α(x) iff
♦(∃x) ∼ α(x) ⊃ (∃x)♦ ∼ α(x)

�(∀x)α(x) ⊃ (∀x)�α(x) iff
∼ (∀x)�α(x) ⊃∼ �(∀x)α(x) iff
(∃x) ∼ �α(x) ⊃∼ �(∀x)α(x) iff
(∃x)♦ ∼ α(x) ⊃∼ �(∀x)α(x) iff
(∃x)♦ ∼ α(x) ⊃ ♦ ∼ (∀x)α(x) iff
(∃x)♦ ∼ α(x) ⊃ ♦(∃x) ∼ α(x)

Exercise. Prove this instance of the converse Barcan consequence: {�(∀x)Fx}
�Q1−x (∀x)�Fx’.

1 vd�(∀x)Fx, w)=T Assp
2 (∀wi)(Rwwi ⊃ vd(∀x)Fx, wi)=T) 1 ∀ I
3 Rww1 ⊃ vd(∀x)Fx, w1)=T 2 ∀ E
4 u1 ∈ D Assumption
5 Rww1 Assumption
6 vd(∀x)Fx, w1)=T 3 5 ⊃ E
7 (∀ui)(ui ∈ D ⊃ vd[ui/x](Fx, w1)=T) 5 ∀ TD (Q1 )
8 u1 ∈ D ⊃ vd[u1/x](Fx, w1)=T 7 ∀E
9 vd[u1/x](Fx, w1)=T 4 8 ⊃ E
10 Rww1 ⊃ vd[u1/x](Fx, w1)=T 5-9 ⊃I
11 (∀wi)(Rwwi ⊃ vd[u1/x](Fx, wi)=T) 10 ∀I
12 vd[u1/x](�Fx, w)=T 11 � TD
13 u1 ∈ D ⊃ vd[u1/x](�Fx, w)=T 4-12 ⊃ I
14 (∀ui)(ui ∈ D ⊃ vd[ui/x](�Fx, w)=T) 13 ∀ I
15 vd(∀x)�Fx, w)=T 14 ∀TD (Q1 )

Exercise. Show that {(∃x)�Fx} �Q1−x �(∃x)Fx.

Suppose vd((∃x)�Fx,w)=T. Then for some d[ui/x] which is an x-variant of
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d, vd[ui/x](�Fx,w)=T. So for all worlds wi accessible to w, vd[ui/x](Fx,w)=T.
Hence, there is an x-variant of d which satisifies ‘Fx’, and so vd((∃x)Fx,wi)=T.
Since the choice of wi is arbitrary, this holds at all accessible worlds, and so
vd(�(∃x)Fx,w)=T.

Exercise. Show that �Q1−x (∀x)�x=x directly using the Q1 semantics.

The assignment made by d to ‘x’ is the same as itself: d(x)=d(x). So d(x,w)=d(x,w),
for any world w in W. Therefore, vd(x,w)=vd(x,w). In that case, vd(x=x,w)=T.
Since this holds at all worlds in W, it holds at all worlds accessible to w, so
vd(�x=x,w)=T. Moreover, as d(x) is arbitrary, this reasoning holds for all x-
variants of d, in which case vd((∀x)�x=x,w)=T.

Exercises. Give derivations to show that the following consequences hold.
{(∃x)♦Fx}`Q1−x ♦(∃x)Fx, {(∃x)�Fx}`Q1−x �(∃x)Fx.

1 (∃x)♦Fx Assumption
2 ♦Fa Assumption
3 Fa Modal Assumption
4 (∃x)Fx 3 ∃ I
5 ♦(∃x)Fx 3-4 ♦ E
6 ♦(∃x)Fx 1 2-5 ∃ E

1 (∃x)�Fx Assumption
2 �Fa Assumption
3 Fa 2 SR
4 (∃x)Fx 3 ∃ I
5 �(∃x)Fx 3-4 � I
6 �(∃x)Fx 1 2-5 ∃ E

Exercise. Show that the Barcan consequence holds if we assume that the ac-
cessibility relation is symmetrical and that the UD of a world is a subset of the
UD of any accessible world.

Given that accessibility is symmetrical and that the UD of a world is the UD
of any accessible world, the UDs of any given world and any accessible world
are identical: each is a subset of the other. In that case, the original reasoning
for the Barcan consequence can be used. If everything at the UD in a world
satisfies the condition ‘�Fx’, then all those things satisfy ‘Fx’ at all accessible
worlds. But the UD of any accessible world is the same as the UD at the given
world, so ‘(∀x)Fx’ is true at such a world, in which case ‘�(∀x)Fx’ is true at
the original world.

Exercise. Justify the soundness in QPL of the inference from ‘�Fa’ to ‘(∃x)�Fx’.

Suppose that ‘�Fa’ is true at w. Then ’Fa’ has a truth-value at w, in which case
‘a’ designates an object in the UD of w. Moreover, by the nesting condition,
‘a’ also designates an object in the UD of any accessible world wi. That same
object will be designated by an x-variant of any variable-assignment d at each
of the accessible worlds. So because ‘Fa’ is true at wi, so is ‘Fx’ on an x-variant
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of d. In that case ‘�Fx’ is for an x-variants of d at w, so that ‘(∃x)�Fx’ is true
at w.

Exercise. Show that ‘�(∃x)x=a’ is invalid in any FQ1R system.

Consider a world w to which wi is the only accessible world. (World wi can be
w if R is reflexive.) Let ‘a’ not designate anything in the UD of wi. In that
case, for no x-variant of a given variable-assignment d is it the case that ‘x=a’
is true at w1. So ‘(∃x)Fx’ is false at wi, and hence ‘�(∃x)Fx’ is false at w.

Exercise. Show the validity in all FQ1R systems of ‘(∀x)(∀y)(x=y ⊃ �x=y)’.

Suppose ‘x=y’ is true at a given world w. By the truth-definition for identity,
‘x’ and ‘y’ are assigned the same member of D (whether the object exists in the
UD of that world or not). Now consider a wi accessible to w. At wi, ‘x=y’ is
true on any such variable assignment, so ‘�x=y’ is true at w. Hence, if ‘x=y’ is
true at w, then ‘�x=y’ is true at w, in which case ‘x=y ⊃ �x=y’ is true at w.
This holds no matter what object is assigned to ‘x’ and ‘y’, so ‘(∀x)(∀y)(x=y ⊃
�x=y)’ is true at w.
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